MDAPITM the OLAP Application�Program Interface�Version 2.0

Programmer’s Guide

January 1998

� 

MDAPI TM The OLAP Application Program Interface Version 2.0 Specification

The OLAP Council

3271 NW Blackcomb Drive

Portland, OR 97229

© Copyright OLAP Council, January 1998

Permission is granted to anyone to use, alter, and redistribute this specification freely, subject to the following restrictions:

The OLAP Council is not responsible for any consequences arising from the use of this specification or any altered version of it.

The origin of this specification must not be misrepresented, either by claim or by omission. Acknowledgment to the OLAP Council must appear in any altered version of this specification.

Any altered version of this specification must be designated as such and must not be misrepresented as being published or endorsed by the OLAP Council.

This notice may not be removed or altered.

�TABLE OF CONTENTS

� TOC \o "1-3" \t "Preface 1,1,Preface 2,2" �Preface	� GOTOBUTTON _Toc410122056  � PAGEREF _Toc410122056 �xiii��

Scope	� GOTOBUTTON _Toc410122057  � PAGEREF _Toc410122057 �xiii��

About this document	� GOTOBUTTON _Toc410122058  � PAGEREF _Toc410122058 �xiii��

Organization of this document	� GOTOBUTTON _Toc410122059  � PAGEREF _Toc410122059 �xiv��

1 Introduction	� GOTOBUTTON _Toc410122060  � PAGEREF _Toc410122060 �1��

Architectural Overview	� GOTOBUTTON _Toc410122061  � PAGEREF _Toc410122061 �1��

Object Orientation	� GOTOBUTTON _Toc410122062  � PAGEREF _Toc410122062 �1��

Components	� GOTOBUTTON _Toc410122063  � PAGEREF _Toc410122063 �1��

Server Connections	� GOTOBUTTON _Toc410122064  � PAGEREF _Toc410122064 �1��

Synchrony of Operations	� GOTOBUTTON _Toc410122065  � PAGEREF _Toc410122065 �2��

Support for Internationalized Applications	� GOTOBUTTON _Toc410122066  � PAGEREF _Toc410122066 �2��

Special classes	� GOTOBUTTON _Toc410122067  � PAGEREF _Toc410122067 �2��

Collections	� GOTOBUTTON _Toc410122068  � PAGEREF _Toc410122068 �2��

The “Any” type	� GOTOBUTTON _Toc410122069  � PAGEREF _Toc410122069 �3��

The OLAP Data Model	� GOTOBUTTON _Toc410122070  � PAGEREF _Toc410122070 �3��

Levels	� GOTOBUTTON _Toc410122071  � PAGEREF _Toc410122071 �4��

Names	� GOTOBUTTON _Toc410122072  � PAGEREF _Toc410122072 �5��

Members of dimensions	� GOTOBUTTON _Toc410122073  � PAGEREF _Toc410122073 �5��

Value Types	� GOTOBUTTON _Toc410122074  � PAGEREF _Toc410122074 �5��

Summary of API Usage	� GOTOBUTTON _Toc410122075  � PAGEREF _Toc410122075 �6��

API Objects	� GOTOBUTTON _Toc410122076  � PAGEREF _Toc410122076 �6��

Queries: Filters, Sorts, and Cubes	� GOTOBUTTON _Toc410122077  � PAGEREF _Toc410122077 �7��

Status Messaging	� GOTOBUTTON _Toc410122078  � PAGEREF _Toc410122078 �8��

Message Collections	� GOTOBUTTON _Toc410122079  � PAGEREF _Toc410122079 �8��

Implementation Notes	� GOTOBUTTON _Toc410122080  � PAGEREF _Toc410122080 �8��

Data Types	� GOTOBUTTON _Toc410122081  � PAGEREF _Toc410122081 �9��

Using Threads	� GOTOBUTTON _Toc410122082  � PAGEREF _Toc410122082 �9��

Cube Validation-Time Strategy	� GOTOBUTTON _Toc410122083  � PAGEREF _Toc410122083 �9��

Administration	� GOTOBUTTON _Toc410122084  � PAGEREF _Toc410122084 �9��

2 Enumerations	� GOTOBUTTON _Toc410122085  � PAGEREF _Toc410122085 �11��

OLAPQuery	� GOTOBUTTON _Toc410122086  � PAGEREF _Toc410122086 �12��

Enumeration SortOrder	� GOTOBUTTON _Toc410122087  � PAGEREF _Toc410122087 �12��

Enumeration QueryStatus	� GOTOBUTTON _Toc410122088  � PAGEREF _Toc410122088 �12��

Enumeration InitialSelection	� GOTOBUTTON _Toc410122089  � PAGEREF _Toc410122089 �12��

OLAPAsynchronousSupport	� GOTOBUTTON _Toc410122090  � PAGEREF _Toc410122090 �14��

Enumeration ProgressStatus	� GOTOBUTTON _Toc410122091  � PAGEREF _Toc410122091 �14��

OLAPCommon	� GOTOBUTTON _Toc410122092  � PAGEREF _Toc410122092 �15��

Enumeration ErrorCode	� GOTOBUTTON _Toc410122093  � PAGEREF _Toc410122093 �15��

Enumeration SeverityCode	� GOTOBUTTON _Toc410122094  � PAGEREF _Toc410122094 �16��

OLAPMetaData	� GOTOBUTTON _Toc410122095  � PAGEREF _Toc410122095 �17��

Enumeration HierarchyDirection	� GOTOBUTTON _Toc410122096  � PAGEREF _Toc410122096 �17��

Enumeration DimensionType	� GOTOBUTTON _Toc410122097  � PAGEREF _Toc410122097 �17��

Enumeration MemberRelation	� GOTOBUTTON _Toc410122098  � PAGEREF _Toc410122098 �17��

Enumeration DataType	� GOTOBUTTON _Toc410122099  � PAGEREF _Toc410122099 �18��

3 Sessions	� GOTOBUTTON _Toc410122100  � PAGEREF _Toc410122100 �19��

Class Session	� GOTOBUTTON _Toc410122101  � PAGEREF _Toc410122101 �20��

Attribute Session::apiVersion (Read Only)	� GOTOBUTTON _Toc410122102  � PAGEREF _Toc410122102 �20��

Attribute Session::language (Read Only)	� GOTOBUTTON _Toc410122103  � PAGEREF _Toc410122103 �20��

Association Session::openConnections	� GOTOBUTTON _Toc410122104  � PAGEREF _Toc410122104 �20��

Association Session::installedDrivers	� GOTOBUTTON _Toc410122105  � PAGEREF _Toc410122105 �20��

Method Session::getDriverByName	� GOTOBUTTON _Toc410122106  � PAGEREF _Toc410122106 �21��

Method Session::openConnection	� GOTOBUTTON _Toc410122107  � PAGEREF _Toc410122107 �21��

4 Connections	� GOTOBUTTON _Toc410122108  � PAGEREF _Toc410122108 �23��

Choosing and connecting to a schema	� GOTOBUTTON _Toc410122109  � PAGEREF _Toc410122109 �23��

Beginning metadata exploration	� GOTOBUTTON _Toc410122110  � PAGEREF _Toc410122110 �23��

Class Connection	� GOTOBUTTON _Toc410122111  � PAGEREF _Toc410122111 �25��

Attribute Connection::maxEdges (Read Only)	� GOTOBUTTON _Toc410122112  � PAGEREF _Toc410122112 �25��

Attribute Connection::minEdges (Read Only)	� GOTOBUTTON _Toc410122113  � PAGEREF _Toc410122113 �26��

Attribute Connection::language (Read/Write)	� GOTOBUTTON _Toc410122114  � PAGEREF _Toc410122114 �26��

Attribute Connection::supportedLanguages (Read Only)	� GOTOBUTTON _Toc410122115  � PAGEREF _Toc410122115 �26��

Association Connection::session	� GOTOBUTTON _Toc410122116  � PAGEREF _Toc410122116 �26��

Association Connection::measureDimension	� GOTOBUTTON _Toc410122117  � PAGEREF _Toc410122117 �26��

Association Connection::dimensions	� GOTOBUTTON _Toc410122118  � PAGEREF _Toc410122118 �27��

Association Connection::descriptors	� GOTOBUTTON _Toc410122119  � PAGEREF _Toc410122119 �27��

Association Connection::defaultDescriptor	� GOTOBUTTON _Toc410122120  � PAGEREF _Toc410122120 �27��

Association Connection::defaultProperty	� GOTOBUTTON _Toc410122121  � PAGEREF _Toc410122121 �27��

Method Connection::newCube	� GOTOBUTTON _Toc410122122  � PAGEREF _Toc410122122 �27��

Method Connection::closeConnection	� GOTOBUTTON _Toc410122123  � PAGEREF _Toc410122123 �28��

Class Driver	� GOTOBUTTON _Toc410122124  � PAGEREF _Toc410122124 �30��

Attribute Driver::vendorName (Read Only)	� GOTOBUTTON _Toc410122125  � PAGEREF _Toc410122125 �30��

Attribute Driver::driverProduct (Read Only)	� GOTOBUTTON _Toc410122126  � PAGEREF _Toc410122126 �30��

Attribute Driver::driverVersion (Read Only)	� GOTOBUTTON _Toc410122127  � PAGEREF _Toc410122127 �30��

Attribute Driver::driverName (Read Only)	� GOTOBUTTON _Toc410122128  � PAGEREF _Toc410122128 �30��

Attribute Driver::language (Read Only)	� GOTOBUTTON _Toc410122129  � PAGEREF _Toc410122129 �30��

Association Driver::availableSchemata	� GOTOBUTTON _Toc410122130  � PAGEREF _Toc410122130 �31��

Association Driver::session	� GOTOBUTTON _Toc410122131  � PAGEREF _Toc410122131 �31��

Method Driver::openConnection	� GOTOBUTTON _Toc410122132  � PAGEREF _Toc410122132 �31��

Method Driver::getSchemataByName	� GOTOBUTTON _Toc410122133  � PAGEREF _Toc410122133 �32��

Class Schema	� GOTOBUTTON _Toc410122134  � PAGEREF _Toc410122134 �33��

Attribute Schema::schemaVersion (Read Only)	� GOTOBUTTON _Toc410122135  � PAGEREF _Toc410122135 �33��

Attribute Schema::schemaName (Read Only)	� GOTOBUTTON _Toc410122136  � PAGEREF _Toc410122136 �33��

Attribute Schema::connectionString (Read Only)	� GOTOBUTTON _Toc410122137  � PAGEREF _Toc410122137 �33��

Attribute Schema::language (Read/Write)	� GOTOBUTTON _Toc410122138  � PAGEREF _Toc410122138 �33��

Attribute Schema::availableLanguages (Read Only)	� GOTOBUTTON _Toc410122139  � PAGEREF _Toc410122139 �34��

Association Schema::driver	� GOTOBUTTON _Toc410122140  � PAGEREF _Toc410122140 �34��

5 Metadata	� GOTOBUTTON _Toc410122141  � PAGEREF _Toc410122141 �35��

Properties and value types	� GOTOBUTTON _Toc410122142  � PAGEREF _Toc410122142 �36��

Dimension types	� GOTOBUTTON _Toc410122143  � PAGEREF _Toc410122143 �37��

Query support	� GOTOBUTTON _Toc410122144  � PAGEREF _Toc410122144 �37��

Class Member	� GOTOBUTTON _Toc410122145  � PAGEREF _Toc410122145 �38��

Attribute Member::name (Read Only)	� GOTOBUTTON _Toc410122146  � PAGEREF _Toc410122146 �38��

Association Member::dimension	� GOTOBUTTON _Toc410122147  � PAGEREF _Toc410122147 �38��

Class Property	� GOTOBUTTON _Toc410122148  � PAGEREF _Toc410122148 �39��

Attribute Property::name (Read Only)	� GOTOBUTTON _Toc410122149  � PAGEREF _Toc410122149 �39��

Attribute Property::type (Read Only)	� GOTOBUTTON _Toc410122150  � PAGEREF _Toc410122150 �39��

Association Property::scope	� GOTOBUTTON _Toc410122151  � PAGEREF _Toc410122151 �40��

Association Property::valueType	� GOTOBUTTON _Toc410122152  � PAGEREF _Toc410122152 �40��

Method Property::getValue	� GOTOBUTTON _Toc410122153  � PAGEREF _Toc410122153 �40��

Class Measure	� GOTOBUTTON _Toc410122154  � PAGEREF _Toc410122154 �42��

Attribute Measure::scale (Read Only)	� GOTOBUTTON _Toc410122155  � PAGEREF _Toc410122155 �42��

Attribute Measure::precision (Read Only)	� GOTOBUTTON _Toc410122156  � PAGEREF _Toc410122156 �42��

Attribute Measure::type (Read Only)	� GOTOBUTTON _Toc410122157  � PAGEREF _Toc410122157 �43��

Association Measure::dimensions	� GOTOBUTTON _Toc410122158  � PAGEREF _Toc410122158 �43��

Association Measure::valueType	� GOTOBUTTON _Toc410122159  � PAGEREF _Toc410122159 �43��

Class PropertyScope	� GOTOBUTTON _Toc410122160  � PAGEREF _Toc410122160 �44��

Association PropertyScope::scopeProperties	� GOTOBUTTON _Toc410122161  � PAGEREF _Toc410122161 �44��

Method PropertyScope::getPropertyByName	� GOTOBUTTON _Toc410122162  � PAGEREF _Toc410122162 �44��

Method PropertyScope::getAllProperties	� GOTOBUTTON _Toc410122163  � PAGEREF _Toc410122163 �45��

Class MemberScope	� GOTOBUTTON _Toc410122164  � PAGEREF _Toc410122164 �46��

Attribute MemberScope::name (Read Only)	� GOTOBUTTON _Toc410122165  � PAGEREF _Toc410122165 �46��

Association MemberScope::dimension	� GOTOBUTTON _Toc410122166  � PAGEREF _Toc410122166 �46��

Method MemberScope::newQuery	� GOTOBUTTON _Toc410122167  � PAGEREF _Toc410122167 �47��

Class Level	� GOTOBUTTON _Toc410122168  � PAGEREF _Toc410122168 �48��

Association Level::dimension	� GOTOBUTTON _Toc410122169  � PAGEREF _Toc410122169 �48��

Class Hierarchy	� GOTOBUTTON _Toc410122170  � PAGEREF _Toc410122170 �49��

Association Hierarchy::levels	� GOTOBUTTON _Toc410122171  � PAGEREF _Toc410122171 �49��

Method Hierarchy::relationQuery	� GOTOBUTTON _Toc410122172  � PAGEREF _Toc410122172 �49��

Class Dimension	� GOTOBUTTON _Toc410122173  � PAGEREF _Toc410122173 �51��

Attribute Dimension::dimensionType (Read Only)	� GOTOBUTTON _Toc410122174  � PAGEREF _Toc410122174 �51��

Association Dimension::hierarchies	� GOTOBUTTON _Toc410122175  � PAGEREF _Toc410122175 �51��

Association Dimension::defaultHierarchy	� GOTOBUTTON _Toc410122176  � PAGEREF _Toc410122176 �52��

Association Dimension::levels	� GOTOBUTTON _Toc410122177  � PAGEREF _Toc410122177 �52��

Class ValueType	� GOTOBUTTON _Toc410122178  � PAGEREF _Toc410122178 �53��

Attribute ValueType::type (Read Only)	� GOTOBUTTON _Toc410122179  � PAGEREF _Toc410122179 �53��

Class ValueDescriptor	� GOTOBUTTON _Toc410122180  � PAGEREF _Toc410122180 �54��

Attribute ValueDescriptor::name (Read Only)	� GOTOBUTTON _Toc410122181  � PAGEREF _Toc410122181 �54��

Class OLAPAny	� GOTOBUTTON _Toc410122182  � PAGEREF _Toc410122182 �55��

6 Queries	� GOTOBUTTON _Toc410122183  � PAGEREF _Toc410122183 �57��

Dimension member queries	� GOTOBUTTON _Toc410122184  � PAGEREF _Toc410122184 �57��

Cube queries	� GOTOBUTTON _Toc410122185  � PAGEREF _Toc410122185 �58��

Query expressions	� GOTOBUTTON _Toc410122186  � PAGEREF _Toc410122186 �60��

Query validation	� GOTOBUTTON _Toc410122187  � PAGEREF _Toc410122187 �61��

Class MemberQuery	� GOTOBUTTON _Toc410122188  � PAGEREF _Toc410122188 �63��

Association MemberQuery::parameters	� GOTOBUTTON _Toc410122189  � PAGEREF _Toc410122189 �63��

Association MemberQuery::descriptors	� GOTOBUTTON _Toc410122190  � PAGEREF _Toc410122190 �63��

Method MemberQuery::keep	� GOTOBUTTON _Toc410122191  � PAGEREF _Toc410122191 �64��

Method MemberQuery::add	� GOTOBUTTON _Toc410122192  � PAGEREF _Toc410122192 �65��

Method MemberQuery::remove	� GOTOBUTTON _Toc410122193  � PAGEREF _Toc410122193 �66��

Method MemberQuery::removeMember	� GOTOBUTTON _Toc410122194  � PAGEREF _Toc410122194 �67��

Method MemberQuery::addMember	� GOTOBUTTON _Toc410122195  � PAGEREF _Toc410122195 �68��

Method MemberQuery::addAllFrom	� GOTOBUTTON _Toc410122196  � PAGEREF _Toc410122196 �69��

Method MemberQuery::removeAllFrom	� GOTOBUTTON _Toc410122197  � PAGEREF _Toc410122197 �69��

Method MemberQuery::keepAllFrom	� GOTOBUTTON _Toc410122198  � PAGEREF _Toc410122198 �70��

Method MemberQuery::addRelations	� GOTOBUTTON _Toc410122199  � PAGEREF _Toc410122199 �71��

Method MemberQuery::removeRelations	� GOTOBUTTON _Toc410122200  � PAGEREF _Toc410122200 �72��

Method MemberQuery::addGeneration	� GOTOBUTTON _Toc410122201  � PAGEREF _Toc410122201 �73��

Method MemberQuery::keepRelations	� GOTOBUTTON _Toc410122202  � PAGEREF _Toc410122202 �74��

Method MemberQuery::sortByValue	� GOTOBUTTON _Toc410122203  � PAGEREF _Toc410122203 �75��

Method MemberQuery::sortByHierarchy	� GOTOBUTTON _Toc410122204  � PAGEREF _Toc410122204 �76��

Method MemberQuery::sortByLevel	� GOTOBUTTON _Toc410122205  � PAGEREF _Toc410122205 �77��

Method MemberQuery::resetNaturalSortOrder	� GOTOBUTTON _Toc410122206  � PAGEREF _Toc410122206 �78��

Method MemberQuery::resort	� GOTOBUTTON _Toc410122207  � PAGEREF _Toc410122207 �79��

Method MemberQuery::selectAll	� GOTOBUTTON _Toc410122208  � PAGEREF _Toc410122208 �80��

Method MemberQuery::selectNone	� GOTOBUTTON _Toc410122209  � PAGEREF _Toc410122209 �80��

Method MemberQuery::newPropertyValueExpression	� GOTOBUTTON _Toc410122210  � PAGEREF _Toc410122210 �81��

Method MemberQuery::newCellValueExpression	� GOTOBUTTON _Toc410122211  � PAGEREF _Toc410122211 �82��

Method MemberQuery::newParameter	� GOTOBUTTON _Toc410122212  � PAGEREF _Toc410122212 �83��

Method MemberQuery::clone	� GOTOBUTTON _Toc410122213  � PAGEREF _Toc410122213 �84��

Method MemberQuery::validate	� GOTOBUTTON _Toc410122214  � PAGEREF _Toc410122214 �84��

Method MemberQuery::validateAsync	� GOTOBUTTON _Toc410122215  � PAGEREF _Toc410122215 �85��

Method MemberQuery::resultCount	� GOTOBUTTON _Toc410122216  � PAGEREF _Toc410122216 �85��

Method MemberQuery::getParameterByName	� GOTOBUTTON _Toc410122217  � PAGEREF _Toc410122217 �86��

Method MemberQuery::addDescriptor	� GOTOBUTTON _Toc410122218  � PAGEREF _Toc410122218 �87��

Method MemberQuery::removeDescriptor	� GOTOBUTTON _Toc410122219  � PAGEREF _Toc410122219 �87��

Method MemberQuery::addProperty	� GOTOBUTTON _Toc410122220  � PAGEREF _Toc410122220 �88��

Method MemberQuery::removeProperty	� GOTOBUTTON _Toc410122221  � PAGEREF _Toc410122221 �89��

Method MemberQuery::newBuffer	� GOTOBUTTON _Toc410122222  � PAGEREF _Toc410122222 �90��

Method MemberQuery::select	� GOTOBUTTON _Toc410122223  � PAGEREF _Toc410122223 �90��

Method MemberQuery::selectAllFrom	� GOTOBUTTON _Toc410122224  � PAGEREF _Toc410122224 �91��

Method MemberQuery::selectRelations	� GOTOBUTTON _Toc410122225  � PAGEREF _Toc410122225 �92��

Method MemberQuery::selectGeneration	� GOTOBUTTON _Toc410122226  � PAGEREF _Toc410122226 �93��

Method MemberQuery::getStatus	� GOTOBUTTON _Toc410122227  � PAGEREF _Toc410122227 �94��

Method MemberQuery::addMembers	� GOTOBUTTON _Toc410122228  � PAGEREF _Toc410122228 �94��

Class ValueExpression	� GOTOBUTTON _Toc410122229  � PAGEREF _Toc410122229 �96��

Attribute ValueExpression::dataType (Read Only)	� GOTOBUTTON _Toc410122230  � PAGEREF _Toc410122230 �96��

Attribute ValueExpression::displayString (Read Only)	� GOTOBUTTON _Toc410122231  � PAGEREF _Toc410122231 �96��

Association ValueExpression::query	� GOTOBUTTON _Toc410122232  � PAGEREF _Toc410122232 �96��

Method ValueExpression::opGT	� GOTOBUTTON _Toc410122233  � PAGEREF _Toc410122233 �97��

Method ValueExpression::opGE	� GOTOBUTTON _Toc410122234  � PAGEREF _Toc410122234 �98��

Method ValueExpression::opLT	� GOTOBUTTON _Toc410122235  � PAGEREF _Toc410122235 �99��

Method ValueExpression::opLE	� GOTOBUTTON _Toc410122236  � PAGEREF _Toc410122236 �99��

Method ValueExpression::opEQ	� GOTOBUTTON _Toc410122237  � PAGEREF _Toc410122237 �100��

Method ValueExpression::opNE	� GOTOBUTTON _Toc410122238  � PAGEREF _Toc410122238 �101��

Method ValueExpression::isMissing	� GOTOBUTTON _Toc410122239  � PAGEREF _Toc410122239 �102��

Method ValueExpression::isBetween	� GOTOBUTTON _Toc410122240  � PAGEREF _Toc410122240 �103��

Method ValueExpression::isInTopN	� GOTOBUTTON _Toc410122241  � PAGEREF _Toc410122241 �104��

Method ValueExpression::isInBottomN	� GOTOBUTTON _Toc410122242  � PAGEREF _Toc410122242 �105��

Method ValueExpression::isInPercentile	� GOTOBUTTON _Toc410122243  � PAGEREF _Toc410122243 �106��

Class ParameterHolder	� GOTOBUTTON _Toc410122244  � PAGEREF _Toc410122244 �108��

Attribute ParameterHolder::value (Read/Write)	� GOTOBUTTON _Toc410122245  � PAGEREF _Toc410122245 �108��

Attribute ParameterHolder::name (Read Only)	� GOTOBUTTON _Toc410122246  � PAGEREF _Toc410122246 �108��

Class Cube	� GOTOBUTTON _Toc410122247  � PAGEREF _Toc410122247 �109��

Attribute Cube::name (Read/Write)	� GOTOBUTTON _Toc410122248  � PAGEREF _Toc410122248 �109��

Association Cube::edges	� GOTOBUTTON _Toc410122249  � PAGEREF _Toc410122249 �109��

Association Cube::descriptors	� GOTOBUTTON _Toc410122250  � PAGEREF _Toc410122250 �109��

Method Cube::pivot	� GOTOBUTTON _Toc410122251  � PAGEREF _Toc410122251 �110��

Method Cube::rotate	� GOTOBUTTON _Toc410122252  � PAGEREF _Toc410122252 �111��

Method Cube::setContext	� GOTOBUTTON _Toc410122253  � PAGEREF _Toc410122253 �111��

Method Cube::setOrientation	� GOTOBUTTON _Toc410122254  � PAGEREF _Toc410122254 �112��

Method Cube::validate	� GOTOBUTTON _Toc410122255  � PAGEREF _Toc410122255 �113��

Method Cube::validateAsync	� GOTOBUTTON _Toc410122256  � PAGEREF _Toc410122256 �113��

Method Cube::getCell	� GOTOBUTTON _Toc410122257  � PAGEREF _Toc410122257 �114��

Method Cube::clone	� GOTOBUTTON _Toc410122258  � PAGEREF _Toc410122258 �115��

Method Cube::newBuffer	� GOTOBUTTON _Toc410122259  � PAGEREF _Toc410122259 �115��

Method Cube::createEdge	� GOTOBUTTON _Toc410122260  � PAGEREF _Toc410122260 �116��

Method Cube::removeEdge	� GOTOBUTTON _Toc410122261  � PAGEREF _Toc410122261 �116��

Method Cube::addDescriptor	� GOTOBUTTON _Toc410122262  � PAGEREF _Toc410122262 �117��

Method Cube::removeDescriptor	� GOTOBUTTON _Toc410122263  � PAGEREF _Toc410122263 �118��

Method Cube::getSubQuery	� GOTOBUTTON _Toc410122264  � PAGEREF _Toc410122264 �118��

Method Cube::getStatus	� GOTOBUTTON _Toc410122265  � PAGEREF _Toc410122265 �119��

Method Cube::getOrientation	� GOTOBUTTON _Toc410122266  � PAGEREF _Toc410122266 �119��

Method Cube::pivotToNestLevel	� GOTOBUTTON _Toc410122267  � PAGEREF _Toc410122267 �119��

Class CubeEdge	� GOTOBUTTON _Toc410122268  � PAGEREF _Toc410122268 �121��

Attribute CubeEdge::suppressMissing (Read/Write)	� GOTOBUTTON _Toc410122269  � PAGEREF _Toc410122269 �121��

Attribute CubeEdge::suppressZeros (Read/Write)	� GOTOBUTTON _Toc410122270  � PAGEREF _Toc410122270 �121��

Association CubeEdge::cube	� GOTOBUTTON _Toc410122271  � PAGEREF _Toc410122271 �122��

Association CubeEdge::nestedQueries	� GOTOBUTTON _Toc410122272  � PAGEREF _Toc410122272 �122��

Method CubeEdge::getDimensions	� GOTOBUTTON _Toc410122273  � PAGEREF _Toc410122273 �122��

Method CubeEdge::resultCount	� GOTOBUTTON _Toc410122274  � PAGEREF _Toc410122274 �123��

Method CubeEdge::getCellIndex	� GOTOBUTTON _Toc410122275  � PAGEREF _Toc410122275 �123��

Method CubeEdge::getIndexMembers	� GOTOBUTTON _Toc410122276  � PAGEREF _Toc410122276 �124��

Method CubeEdge::getNestingOfDimension	� GOTOBUTTON _Toc410122277  � PAGEREF _Toc410122277 �124��

7 Fetch	� GOTOBUTTON _Toc410122278  � PAGEREF _Toc410122278 �127��

Buffer classes	� GOTOBUTTON _Toc410122279  � PAGEREF _Toc410122279 �127��

Buffer retrieval	� GOTOBUTTON _Toc410122280  � PAGEREF _Toc410122280 �129��

Buffer navigation	� GOTOBUTTON _Toc410122281  � PAGEREF _Toc410122281 �130��

Metadata access	� GOTOBUTTON _Toc410122282  � PAGEREF _Toc410122282 �134��

Class Buffer	� GOTOBUTTON _Toc410122283  � PAGEREF _Toc410122283 �135��

Attribute Buffer::extent (Read Only)	� GOTOBUTTON _Toc410122284  � PAGEREF _Toc410122284 �135��

Attribute Buffer::valuesCount (Read Only)	� GOTOBUTTON _Toc410122285  � PAGEREF _Toc410122285 �135��

Association Buffer::edgeBuffers	� GOTOBUTTON _Toc410122286  � PAGEREF _Toc410122286 �136��

Association Buffer::cube	� GOTOBUTTON _Toc410122287  � PAGEREF _Toc410122287 �136��

Association Buffer::currentCell	� GOTOBUTTON _Toc410122288  � PAGEREF _Toc410122288 �136��

Method Buffer::getCells	� GOTOBUTTON _Toc410122289  � PAGEREF _Toc410122289 �136��

Method Buffer::getCellsFloat	� GOTOBUTTON _Toc410122290  � PAGEREF _Toc410122290 �137��

Method Buffer::getCellsDouble	� GOTOBUTTON _Toc410122291  � PAGEREF _Toc410122291 �138��

Method Buffer::getCellsText	� GOTOBUTTON _Toc410122292  � PAGEREF _Toc410122292 �139��

Method Buffer::getCellsLong	� GOTOBUTTON _Toc410122293  � PAGEREF _Toc410122293 �140��

Method Buffer::getCellsDate	� GOTOBUTTON _Toc410122294  � PAGEREF _Toc410122294 �141��

Method Buffer::getCellsBool	� GOTOBUTTON _Toc410122295  � PAGEREF _Toc410122295 �141��

Class EdgeBuffer	� GOTOBUTTON _Toc410122296  � PAGEREF _Toc410122296 �143��

Attribute EdgeBuffer::extent (Read Only)	� GOTOBUTTON _Toc410122297  � PAGEREF _Toc410122297 �143��

Association EdgeBuffer::edgeLayerBuffers	� GOTOBUTTON _Toc410122298  � PAGEREF _Toc410122298 �143��

Association EdgeBuffer::cubeEdge	� GOTOBUTTON _Toc410122299  � PAGEREF _Toc410122299 �143��

Method EdgeBuffer::next	� GOTOBUTTON _Toc410122300  � PAGEREF _Toc410122300 �144��

Method EdgeBuffer::previous	� GOTOBUTTON _Toc410122301  � PAGEREF _Toc410122301 �144��

Method EdgeBuffer::setIndex	� GOTOBUTTON _Toc410122302  � PAGEREF _Toc410122302 �145��

Method EdgeBuffer::scroll	� GOTOBUTTON _Toc410122303  � PAGEREF _Toc410122303 �145��

Class EdgeLayerBuffer	� GOTOBUTTON _Toc410122304  � PAGEREF _Toc410122304 �147��

Attribute EdgeLayerBuffer::extent (Read Only)	� GOTOBUTTON _Toc410122305  � PAGEREF _Toc410122305 �147��

Attribute EdgeLayerBuffer::propertiesCount (Read Only)	� GOTOBUTTON _Toc410122306  � PAGEREF _Toc410122306 �147��

Attribute EdgeLayerBuffer::valuesCount (Read Only)	� GOTOBUTTON _Toc410122307  � PAGEREF _Toc410122307 �147��

Association EdgeLayerBuffer::memberQuery	� GOTOBUTTON _Toc410122308  � PAGEREF _Toc410122308 �147��

Association EdgeLayerBuffer::currentCell	� GOTOBUTTON _Toc410122309  � PAGEREF _Toc410122309 �148��

Method EdgeLayerBuffer::getEdgeLayerCells	� GOTOBUTTON _Toc410122310  � PAGEREF _Toc410122310 �148��

Method EdgeLayerBuffer::getCellsFloat	� GOTOBUTTON _Toc410122311  � PAGEREF _Toc410122311 �149��

Method EdgeLayerBuffer::getCellsDouble	� GOTOBUTTON _Toc410122312  � PAGEREF _Toc410122312 �149��

Method EdgeLayerBuffer::getCellsText	� GOTOBUTTON _Toc410122313  � PAGEREF _Toc410122313 �150��

Method EdgeLayerBuffer::getCellsLong	� GOTOBUTTON _Toc410122314  � PAGEREF _Toc410122314 �151��

Method EdgeLayerBuffer::getCellsDate	� GOTOBUTTON _Toc410122315  � PAGEREF _Toc410122315 �152��

Method EdgeLayerBuffer::getCellsBool	� GOTOBUTTON _Toc410122316  � PAGEREF _Toc410122316 �153��

Class Cell	� GOTOBUTTON _Toc410122317  � PAGEREF _Toc410122317 �154��

Association Cell::value	� GOTOBUTTON _Toc410122318  � PAGEREF _Toc410122318 �154��

Class EdgeLayerCell	� GOTOBUTTON _Toc410122319  � PAGEREF _Toc410122319 �155��

Attribute EdgeLayerCell::span (Read Only)	� GOTOBUTTON _Toc410122320  � PAGEREF _Toc410122320 �155��

Attribute EdgeLayerCell::offset (Read Only)	� GOTOBUTTON _Toc410122321  � PAGEREF _Toc410122321 �155��

Association EdgeLayerCell::member	� GOTOBUTTON _Toc410122322  � PAGEREF _Toc410122322 �155��

Association EdgeLayerCell::cell	� GOTOBUTTON _Toc410122323  � PAGEREF _Toc410122323 �156��

8 Asynchronous Support	� GOTOBUTTON _Toc410122324  � PAGEREF _Toc410122324 �157��

Class ProgressMonitor	� GOTOBUTTON _Toc410122325  � PAGEREF _Toc410122325 �159��

Association ProgressMonitor::messages	� GOTOBUTTON _Toc410122326  � PAGEREF _Toc410122326 �159��

Method ProgressMonitor::cancel	� GOTOBUTTON _Toc410122327  � PAGEREF _Toc410122327 �160��

Method ProgressMonitor::wait	� GOTOBUTTON _Toc410122328  � PAGEREF _Toc410122328 �160��

Method ProgressMonitor::getStatus	� GOTOBUTTON _Toc410122329  � PAGEREF _Toc410122329 �160��

9 Miscellaneous	� GOTOBUTTON _Toc410122330  � PAGEREF _Toc410122330 �163��

Exception handling	� GOTOBUTTON _Toc410122331  � PAGEREF _Toc410122331 �163��

Internationalization	� GOTOBUTTON _Toc410122332  � PAGEREF _Toc410122332 �164��

Class OLAPException	� GOTOBUTTON _Toc410122333  � PAGEREF _Toc410122333 �166��

Attribute OLAPException::maximumSeverity (Read Only)	� GOTOBUTTON _Toc410122334  � PAGEREF _Toc410122334 �166��

Association OLAPException::messages	� GOTOBUTTON _Toc410122335  � PAGEREF _Toc410122335 �166��

Class Language	� GOTOBUTTON _Toc410122336  � PAGEREF _Toc410122336 �167��

Attribute Language::name (Read Only)	� GOTOBUTTON _Toc410122337  � PAGEREF _Toc410122337 �167��

Class Message	� GOTOBUTTON _Toc410122338  � PAGEREF _Toc410122338 �168��

Attribute Message::message (Read Only)	� GOTOBUTTON _Toc410122339  � PAGEREF _Toc410122339 �168��

Attribute Message::errorCode (Read Only)	� GOTOBUTTON _Toc410122340  � PAGEREF _Toc410122340 �168��

Attribute Message::nativeCode (Read Only)	� GOTOBUTTON _Toc410122341  � PAGEREF _Toc410122341 �168��

Attribute Message::severity (Read Only)	� GOTOBUTTON _Toc410122342  � PAGEREF _Toc410122342 �168��

10 Open Issues	� GOTOBUTTON _Toc410122343  � PAGEREF _Toc410122343 �171��

Internationalization	� GOTOBUTTON _Toc410122344  � PAGEREF _Toc410122344 �171��

Expressions	� GOTOBUTTON _Toc410122345  � PAGEREF _Toc410122345 �171��

Properties and Value Types	� GOTOBUTTON _Toc410122346  � PAGEREF _Toc410122346 �171��

��TABLE OF FIGURES

� TOC \c "Figure" �Figure 1-1 - The MDAPI Data Model	� GOTOBUTTON _Toc410122347  � PAGEREF _Toc410122347 �4��

Figure 4-1 - Connection and associated classes	� GOTOBUTTON _Toc410122348  � PAGEREF _Toc410122348 �24��

Figure 5-1 - Basic Metadata classes	� GOTOBUTTON _Toc410122349  � PAGEREF _Toc410122349 �36��

Figure 5-2 - Measure and Property with ValueType	� GOTOBUTTON _Toc410122350  � PAGEREF _Toc410122350 �37��

Figure 6-1 - MemberScope query subclasses	� GOTOBUTTON _Toc410122351  � PAGEREF _Toc410122351 �59��

Figure 6-2 - ValueExpression and associated classes	� GOTOBUTTON _Toc410122352  � PAGEREF _Toc410122352 �60��

Figure 6-3 - MemberQuery selection example	� GOTOBUTTON _Toc410122353  � PAGEREF _Toc410122353 �61��

Figure 6-4 - Cube and associated query definition classes	� GOTOBUTTON _Toc410122354  � PAGEREF _Toc410122354 �62��

Figure 6-5 - Cube and associated query result classes	� GOTOBUTTON _Toc410122355  � PAGEREF _Toc410122355 �62��

Figure 7-1 - Buffer and associated classes	� GOTOBUTTON _Toc410122356  � PAGEREF _Toc410122356 �129��

Figure 7-2 - Buffer navigation example, column headers	� GOTOBUTTON _Toc410122357  � PAGEREF _Toc410122357 �132��

Figure 7-3 - Buffer navigation example, report body	� GOTOBUTTON _Toc410122358  � PAGEREF _Toc410122358 �133��

Figure 8-1 - ProgressMonitor and associated classes	� GOTOBUTTON _Toc410122359  � PAGEREF _Toc410122359 �158��

Figure 9-1 - Exception and associated classes	� GOTOBUTTON _Toc410122360  � PAGEREF _Toc410122360 �164��

��Preface

This document specifies the On-Line Analytical Processing (OLAP)  Application Program Interface (API), Version 2.0.  The Multi-Dimensional API (MDAPI TM) is a public, nonproprietary specification published by the OLAP Council, a not-for-profit association of vendors of multidimensional database software.

Scope

The Version 2.0 MDAPI TM provides applications with read-only access to OLAP multidimensional databases. This version provides

Server connection and login capabilities

Metadata functions

Filter, sort, and cube definition functions

Data fetch functions

Error handling

The API also supports the pass-through of vendor-specific extensions. Future versions of this specification will support additional capabilities.

About this document

The Version 2 MDAPI TM is an object-oriented API.  OLAP objects such as cubes, hierarchies, and dimensions are represented as classes.  The model was designed using the Unified Modeling Language (UML), a language-neutral object modeling language that is in common use.  Because the model itself is the most natural expression of the API, this document describes the API in terms of model elements such as classes, attributes, associations, and methods.  This document is intended to serve as a language-neutral guide for the use of the API rather than as a reference.  The separate documents MDAPI Java Reference and MDAPI COM Reference are reference guides for programmers.

Most of this document describes the classes that implement the API.  For most classes, the following information is shown:

A description of the class which discusses its purpose and usage.

The name of the superclass from which the class is derived.

A list of any attributes of the class, followed by a description of each attribute.  Attributes are listed as a type followed by a symbolic name.  Attributes may be read-only (applications can inspect the attribute, but cannot change its value) or read-write (applications can inspect and change the attribute).

A list of any associations between instances of the class and other classes, followed by a description of each association.  Associations are listed as a type followed by a symbolic name.  If instances of the class can be associated with more than one instance of another class, the association type is shown as a collection.  Applications can inspect associations but cannot change them.  Some associations are qualified, meaning that a distinct value of some other type qualifies the association with each instance.  A parameter is shown to represent the qualification.

A list of any methods of the class, followed by a description of each method.  Methods are listed as a calling sequence in the form return-type method-name(parameter-1-type parameter-1-symbolic-name, parameter-2-type parameter-2-symbolic-name,…,parameter-n-type parameter-n-symbolic-name).  The descriptive information that is shown for a method is described below.

Some additional notes about classes:

Some classes represent enumerations.  For enumeration classes, a description of the enumeration is shown, followed by a list of symbolic enumeration values and a description of each.

Collection classes are not described in this document.  Since different object-oriented languages handle collections in such very different ways, the descriptions of the collection classes are deferred to the language-specific references documents.

Only summary information is provided about error handling.  The handling of errors also differs tremendously across languages, and details about error handling are also deferred to the references.

The following information is shown for methods:

A description of the method which discusses its purpose and usage.  This may include descriptions of errors that may be signaled by the method.

A table that shows the calling parameters for the method.  A type, symbolic name, and brief description are shown for each parameter.  All parameters are input parameters.

The type of object that the method returns.

A list of exceptions that the method may raise.

A description of pre-conditions that must be satisfied if the method is to execute successfully.

A description of post-conditions that describe any side effects of invoking the method.

Organization of this document

Chapter 1 provides an overview of the API. Each of the remaining chapters consist of a brief introduction followed by descriptions of the classes that constitute the API, organized by subject as follows:

Chapter 2 describes enumerations used in the API.

Chapter 3 describes classes that are used to establish an MDAPI session.  This portion of the API is provided by the OLAP Council and is used by all vendors’ implementations.

Chapter 4 describes classes that are used to connect  and login to Multidimensional (MD) databases.

Chapter 5 describes metadata classes.  These constitute the mechanism used to obtain information about the structure and meaning of MD databases.

Chapter 6 describes cube definition classes, including mechanisms for filtering and sorting the contents of cubes.  In this document,  cube means a subcube of the overall database model, defined by the queries applied to it.

Chapter 7 describes cube buffer fetch classes.  These enable clients to obtain data values from cubes.

Chapter 8 describes classes that support the asynchronous evaluation of queries.

Chapter 9 describes miscellany, including classes for handling error messages.

Chapter 10 discusses open issues that will be addressed by future revisions of the MDAPI.

�Introduction

The OLAP Council’s MDAPI version 2 is an object-oriented database-independent interface to multidimensional data sources (MD schemata).  It enables clients to select an MD schema, connect to it, and to query its metadata and data via the connection. 

It eliminates much of the client’s work in managing the metadata necessary to form queries.  It shields the client from the differences in the native structure and functionality of MD schemata between different vendors’ servers.  It also the application to represent queries as a set of objects, rather than having to generate text in some language to form a query.  There is no textual language syntax specified or used in the API.  The absence of a textual language syntax simplifies writing an interactive browser for navigation through an MD schema’s metadata and data.

All MDAPI queries return data into a result object called a cube; and the application fetches cell data from this result cube.  While called a cube, it may have two edges (like a spreadsheet), three edges (like a physical cube), or more (a hypercube).  Methods of the API simplify the process of producing a spreadsheet-like report from the results of a query.  Note that the dimensions of the report cube are called edges to distinguish them from the dimensions of an MD schema.

Version 2 is a query-only API.  There is no standard way to modify data in a connected MD schema, modify the structure of an MD schema, nor to carry out administrative functions through it.  Vendors may provide extensions to provide these capabilities, but vendor-specific extensions will work only with the vendor’s databases.

Architectural Overview

Object Orientation

The MDAPI models all metadata, query and infrastructure elements as objects.  The MDAPI uses a session object as the root for all MDAPI functionality.  Each driver object implements the MDAPI functionality for a particular OLAP server.  OLAP metadata (dimensions, hierarchies, members, etc.) are individual objects.  Each element of a query and each fully-formed query is an individual object as well. 

Components

For each supported platform (currently, Java and COM), the OLAP Council will provide an implementation of the session object and related implementation objects, while vendors will supply the drivers.  The OLAP Council will also provide the collection objects.  All other objects are created by the session or drivers as needed during a connection, and are therefore vendor implementations of the classes that are defined by the OLAP Council..

Server Connections

A client interacts with the data and metadata of an MD schema by opening a connection to it through a driver.  Once opened, a connection remains open until the client closes it or until the session is terminated.  The API supports multiple simultaneous connections on a single MD schema and on multiple MD schemata.  Multiple instances of the API (each defined by creating a session object) may be simultaneously active on a single machine, though only one should be active in any given process.

Synchrony of Operations

All operations of the API may be executed synchronously (i.e. all of the work of a method on an API object is completed before the method returns).  However, the execution of a cube query is potentially time-consuming.  Depending on the implementation of a driver, this operation may be performed asynchronously.  All other operations, including metadata query operations, are currently specified to be synchronous, but may have asynchronous behavior defined in the future.

Support for Internationalized Applications

The MDAPI provides support for internationalized applications by incorporating language as a property of a connection, driver and session.  The session and driver each have a default language (which may be different), set when they are installed.  Each connection will be opened with a default language, too, but it may be changed at any point during the connection’s lifetime.

Special classes

Most of the elements of the UML model that underlies the MDAPI can be represented as classes that are fairly similar for both implementations of the API.  But two kinds of classes are treated quite differently in Java and COM, and they require special treatment in this document.

Collections

Many MDAPI objects are related to one another in a one-to-many fashion.  A Session may envelop several Connections, a Connection may reveal many Dimensions, a Dimension may have several hierarchies, and so on.  These relationships between classes are represented in the UML model as associations. 

Few object-oriented environments have an intrinsic representation of associations.  Therefore, an association is usually implemented as an object attribute whose value is a group of other objects.  The MDAPI represents these multi-valued attributes as collections.  The Java Vector class is a rough analog for a collection.  COM also supports the concept of collections.  Like arrays, collections can be indexed.  But collections also support enumeration methods that are often easier for a programmer to use.  The MDAPI uses a narrow definition of a collection: an MDAPI collection is an ordered set of objects.  A collection cannot contain duplicates of an object, and all slots in the collection are occupied.

Because some MDAPI methods take collections as input parameters., a programmer has to be able to create and maintain collection objects.  To make this easier, the collection classes are among the few in the API that can be instantiated directly, as with the new operator.  So that programmers can instantiate a collection class without specifying a particular vendor’s implementation of the class, the collection classes are provided by the OLAP Council and are common across all vendors’ implementations.

Because there are inherent representations of Collections in Java and COM, the implementations of the Collection classes are quite different.  Therefore, this guide says very little about them.  The reader should think of a collection object in this document as an ordered, contiguous set of unique objects that can be instantiated, counted, indexed, and enumerated.

The “Any” type

The MDAPI makes use of an “Any” type that can hold a value with any of the MDAPI data types.  The Any class s is used to represent the values in the result set of a query, which may have different data types.  It is also used to specify parameters for filtering and sorting, whose data type can vary according to the specifics of the filter or sort specification.

The COM variant type is a fairly close match for the MDAPI Any class, and the COM implementation uses variants to represent the Any type.  Java does not provide a good analog, and the Any type is an explicit class in the  Java implementation.  Use of the Java Object class to represent Any would satisfy many of the requirements, but would not allow the API to restrict the allowable types to the set of MDAPI data types, and would not allow a simple inspection of the type of an object.

Because some MDAPI methods take Any objects as input parameters, a programmer has to be able to create Any objects.  Therefore, the Any class can also be instantiated directly, and it, too , is provided by the OLAP Council and is common across all vendors’ implementations.

The OLAP Data Model

The MDAPI exposes the structure of an MD schema as a set of objects.  Since different OLAP servers have different features and functionality, they also have different metadata.  One of the purposes of the MDAPI is to provide a uniform notion of this metadata, regardless of the OLAP server it represents. In the OLAP data model,

Every dimension has at least one hierarchy.  The hierarchy may or may not have a name.

Every hierarchy has at least one level.  The level may or may not have a name.

Every level has at least one member.  Each member has a name.  The top level of a dimension may have more than one member, depending on server capabilities.

� REF _Ref404412890 \* MERGEFORMAT �Figure 1-1� is a Unified Modeling Language (UML) diagram that illustrates the basic data model.



�

Figure � STYLEREF 1 \n �1�-� SEQ Figure \* ARABIC \r 1 �1� - The MDAPI Data Model

Levels

Different database products support the concept of level in different ways.  Some products support levels as a named subset of members from the dimension. In such a product, a Country level might contain members France, Japan, UK, and USA.  All leaf members in the hierarchy will be at the same distance from the root(s) of the hierarchy.  Other products support the concept of a level as the set of members that are a given distance from a root member of a hierarchy or from the leaves of a hierarchy.  In such a product, a root member Country might have children France, Japan, UK, and USA.  In such a hierarchy, the distance from the root(s) to one leaf member might be different than the distance to another leaf member (also called an asymmetric or ragged hierarchy).  Even in one product, both types of hierarchies may be found.

In order to accommodate both a semantic notion of level and a hierarchical notion of level, the MDAPI allows a hierarchy to contain levels which correspond to either case.  When a hierarchy is asymmetric or ragged, there may be a hierarchical relationship between members within a level.  However, levels will divide the members as follows: between any two adjacent levels, the member(s) closest to the root from the lower level will be no closer to the root than the members(s) furthest from the root in the higher level.  While less useful, the MDAPI also allows an entire hierarchy to be represented by a driver by a single level, with all members and their relationships expressed within the single pseudo-level.  Therefore, a client program should avoid making many assumptions about the structure of members in levels. 

Names

Names are unique in the following scopes:

Every dimension name is unique among the dimensions for a schema

Every hierarchy name is unique among the hierarchies for a dimension

Every level name is unique among the levels for a dimension

Every member name is unique within a dimension

Members of dimensions

In OLAP applications, members are both metadata and data.  As metadata, they partly identify values within a hypercube and fully identify values of application-defined properties (which are essentially one-dimensional measures).  As data, they are themselves the results of queries like “what are the top 10 stores in terms of profit?”  The MDAPI provides a unified treatment for members as metadata and as data.  The member query object (class name: MemberQuery) specifies a set of members for a dimension.  When evaluated directly, the member query object yields a set of members which meet the criteria.  When attached to a cube, the member query object determines the members which are returned for that dimension.  The combination of the member query objects for all of the dimensions determines what data is returned.

Value Types

Besides an intrinsic value, a measure or property may have supplemental information associated with it.  For example, a schema could include a formula for a numeric measure that creates a formatted string for display.  The MDAPI consolidates the handing of both the intrinsic value and any supplemental information with class ValueType.  Every measure and property has a value type that represents its value, and may have additional value types to represent available supplemental information.

The various value types for a measure or property will often have different data types.  The data type for a numeric measure might be DOUBLE, while the data type of the formatted string is probably TEXT.  Therefore, each value type has its own data type.  The data type of the value type that represents the intrinsic value of a measure or property is always the same as the data type of the measure or property itself.

Part of defining an MDAPI schema is specifying the value types to retrieve for the edges and for the query body.  But since the query body can include values from several measures, and since those measures can have different value types, the query cannot simply include a set of value types.  To solve this problem, the MDAPI provides the ValueDescriptor class.  The association between a measure or property and each of its value types is qualified by a value descriptor.  All access to value types in the API is qualified by value descriptors.  Given a measure or property and a value descriptor, the MDAPI can find a single value type, if a value type exists for that measure or property and value descriptor.  Queries provide a list of value descriptors to represent the value types to retrieve.

Some value descriptors may apply to more than one measure and/or property.  For example, the numeric formatting formula may apply to all of the numeric measures and properties in the schema.  To simplify the use of such common value descriptors, the Connection includes a set of all of the value descriptors that are used by any Measure or Property in the schema.

Summary of API Usage

Typically, an application will obtain a connection object on an MD schema, query some metadata to get started, pose an initial query, and go into a rough loop of fetching the data from the last query, responding to user requests, and modifying the posed query.  Understanding the multidimensional metadata is vital to constructing a client tool.

Queries are defined by member query objects that are attached to a cube.  To query data, an application creates the member query objects that specify the members for each dimension to be returned into a result cube.  The client also creates a cube query object and specifies how the member queries are to be oriented onto the cube’s edges.  The client then requests that the cube validate itself, after which the data may be fetched from the cube and its edges.

Member query objects may be incrementally modified, to represent the incremental modifications to queries that typify sessions with OLAP servers.  The cube(s) that use the member queries may then be re-validated and the new results fetched.

API Objects

Member queries, cubes, and the metadata needed to define them are all modeled as objects in the API.  The MDAPI defines a number of different kinds of objects.  All types of OLAP metadata are metadata objects.  All filters and sorts are query objects. A 3-D cube view of the data in the MD schema is an object as well.  A client interacts with these objects as it would interact with any other objects in the client environment (COM or Java).  Metadata objects are created by the vendor’s driver that is used for a connection and discovered by the client in response to specific metadata queries.  Query objects are all created by the connection object at the client’s request.

When a connection is established to an MD schema, the API creates a connection object.  A connection object both identifies the connection and serves as the root for all metadata query and cube view creation operations on that schema.

All metadata is queried relative to a particular connection to a particular MD schema, so each object relates only to the connection from which it was generated.  If the same piece of metadata was queried multiple times from a single connection, only one object will be returned for it (the object will have the same identity each time: the same pointer in COM or reference value in Java).  Objects from two or more different connections may not be combined in any API method.

Metadata objects are valid for the life of a connection.  As long as the connection is open, a client may use any metadata object queried from that connection to which it has a reference.  Once the connection is closed the continued use of that object yields undefined results.  When a connection is closed, a client should make sure to drop all outstanding references on metadata objects related to that connection.

During the course of the connection, the MDAPI presents an unchanging view of the metadata (and it is the responsibility of the driver writer to ensure this).  A client of the V2 API may assume that metadata relationships will not change during the course of a session; of course, they may change between sessions.

Filters, sorts, and cubes are objects created at the client’s request, and the client may delete them at any time.  These objects are associated with a particular connection, and should the connection be closed, their resources would be reclaimed and all extant handles to them are rendered invalid.

Queries: Filters, Sorts, and Cubes

Cubes are the objects from which most data is fetched.  A query is formed by defining member queries, optionally attaching one or more properties to the member queries to return member-related information along with cube cell data, specifying value types for member and content data, and orienting the member queries onto the edges of the cube. 

While each cube maintains its own member query for each dimension of the MD schema, member queries may incorporate other member queries and one member query may be shared among as many others (and as many cubes) as desired. 

Member queries will specify the set of members to return for a dimension, and may optionally specify the ordering of returned members as well.  Some kinds of data-based member query operations (e.g. top-N, bottom-N, and percentile rank filters) return members in order of rank by default, unless further ordering is specified.  Member queries formed from an explicit set of members also by default return members in the order that they are found in the explicit set.

Part of the definition of a cube is the orientation of member queries or dimensions onto its edges.  Each cube edge can hold more than one dimension (and whenever the MD schema has more dimensions than the cube query, some cube edge must hold more than one dimension).  Each dimension mapped to the edge of a cube exists at a particular nesting level, and only one member query or dimension exists at any nesting level.  To the MDAPI, a nesting level is just a zero-based numerical index, where 0 is the “innermost”, or level that is closest to the cells, and the highest index on any cube edge is one less than the number of dimensions mapped to that edge.  (There are never any gaps in the index numbering.)  A dimension may be assigned to a particular nesting level of a particular edge through the pivot() method of the Cube object.  A set of dimensions may be assigned to adjacent nesting levels through the Cube’s setOrientation() method.  Furthermore, the dimensions referenced in a call to Cube’s setContext() will be assigned to adjacent nesting levels on the page dimension.

The API provides no methods for saving and restoring any of its objects (cubes, filters, sorts, and the metadata they require).  Once the connection is closed, any outstanding object references become meaningless, even if another connection is subsequently opened to the same MD schema. 

Another part of the definition of a cube is the specification of properties and value types.  Each member query can provide a set of properties to be retrieved.  Each member query can also provide a set of value descriptors, which map to the value types that will be retrieved for each property.  The cube itself can also provide a set of value descriptors, which map to the value types that will be retrieved for the measures in the cube.

Each edge of the cube may also have suppression of empty cell combinations specified for it.  Specifying this means that when the query is evaluated, members on an edge or combinations of members on an edge that only intersect empty cells in the result space will not be returned.

After all member queries are defined and oriented on a cube, properties are specified for all member queries, value types are specified for member queries and the query body, and any empty-cell suppression is specified, the cube must be validated before any information may be fetched from it.  The validation point is also a useful placeholder for internal bookkeeping operations prior to an actual fetch of data by the client, including the establishment of internal indexing from cell indexes to cell data.  Depending on a vendor’s implementation, validation may simply verify that there are no problems with the defined cube and defer fetching cell data until a later point, or it may also at that point issue a query to the server and fetch all of the cell data specified by the query.

Validation may be performed asynchronously if the driver permits.  Asynchronous validation allows a client to initiate a cube validation on some thread and then use that thread for useful work until the validation is complete, and also to cancel the query if desired.

After a cube has been validated, a buffer onto the query results may be obtained, and cube cell data and information on the members of the cube may be fetched from the cursor.  Data queried from its buffer does not change for the life of the buffer.

After a cube is validated, if all possible cells for the member queries were requested, then the members returned for each dimension mapped to an edge are arranged as follows: along an edge, every member for the innermost [0] nesting level repeats once for each member in the next-to-innermost [1] nesting level, and each combination of members from the [0] and [1] nesting levels repeats for each member of the next nesting level out [2] , and so on.  If the cube definition requested suppression of cell indexes along one or more edges for which all intersected cells were empty, then the above algorithm would be modified so that each member-combination along those edges that had only empty cells associated with it would not appear.  At each combination of members from the dimensions mapped to an edge which is returned, there is a unique cell slot.  The total number of cell slots along an edge of the cube is equal to the number of members in each dimension mapped to that edge multiplied together.

Data is fetched from the cube cursor and its edge cursors in terms of the cell indexes along each edge.  Each edge cursor may traverse some number of cell indexes (the extent of the edge).  Every cell in the result cube may be identified by one index from each edge of the cube, each index taking the form of an integer ranging from 0 to one less than the extent of that edge.

Status Messaging

The API enables all functions except the overall API initialization function to communicate all messages relevant to a particular API call.  Frequently, the failure of some action somewhere on the client or the server triggers the failure of a related action in a chain reaction, leading to the failure of the call.  With complex calls, more than one thing may go wrong, and a vendor’s implementation of the API call may choose to list all failures in a call (for example, all incorrect arguments, or the full chain of internal failures) rather than just one.  The MDAPI provides an exception class (class name: Exception) to allow a client to receive all of these discrete messages.

Message Collections

The Exception class includes an ordered collection of Messages.  Each message represents a discrete status event.  Each status entry contains an MDAPI status code, the severity of the status, and an associated text string describing the event.  The text string is in the current language of the layer that produced the error.  For some errors, the message will also contain a native status code for the platform (e.g. a UNIX errno, or a Win32 error code).  The Exception class has an attribute that represents the maximum severity in the collection.

Implementation Notes

The API is designed to be compatible with a variety of client programming environments, including C/C++, Pascal, Visual Basic, Java, and so on.  The MDAPI will initially be available for Java and COM as both a set of Java classes and interfaces, and for COM as a set of COM objects.

Data Types

Where possible, the data types used by the MDAPI map to types already available on an platform.  The MDAPI specifies use of a string, a date and an “any” data types.  These map to platform types as follows:

COM:

“string” maps to BSTR

“date” maps to DATE

“any” maps to VARIANT

Java

“string” maps to java.lang.String

“date” maps to java.lang.date

“any” is implemented by a special MDAPI Any class

Using Threads

The MDAPI is thread-safe.  Methods can be safely called from more than one thread.  However, implementations will vary in the degree of concurrency that they support.  In general, MDAPI implementations are not required to provide any particular degree of concurrency.  That is, it is allowable for an application to use a single synchronization object to effectively single-thread all methods.

The class that supports asynchronous query validation, ProgressMonitor, is an exception to this.  These methods may be called in a separate thread form the thread in which the validation is taking place, and are guaranteed to execute concurrently.

Cube Validation-Time Strategy

The choice of validate-time strategy for preparing the query, defining the cache space, and fetching cell data is up to the discretion of the driver writer.  Depending on the driver implementation, Cube::validate() may issue one or more queries to the server in order to fetch some or all of the cell data within the cube.  The driver can defer fetching data in the cube until it is needed by a specific Cube::getCell... operation or cursor fetch operation, as long as the cube appears to the API caller to be fully populated.  The strategy should assure reasonable performance.

Furthermore, at the driver-writer's discretion, queries may be issued that perform on-the-fly computations (such as summations) in order to obtain cell results for unconsolidated data. This may be required if a server does not compute certain cells implicitly upon a query, but requires a separate compute request in order to obtain values for those cells based on the rules in the MD schema.

Administration

The API is designed to require a minimum of administration once installed. The actual administration is likely to be platform-dependent. The session object and related objects should be installable from a setup program obtained from the OLAP Council or a vendor. New drivers should be installable from a vendor-specific driver setup program. 

�Enumerations

This section describes all of the enumerations used by the API.

OLAPQuery

Enumeration SortOrder



SortOrder is an enumeration of the possible sorting orders



ASCENDING	Sort in ascending order.  For a hierarchical sort, parents follow children.

DESCENDING	Sort in descending order.  For a hierarchical sort, parents precede children.



Enumeration QueryStatus



QueryStatus is an enumeration class representing the set of all possible states of a Cube or MemberQuery.



VALIDATED	The query has been validated, so data can be fetched.  It has not been modified since then.

VALIDATING	The query is currently being validated asynchronously.  The only operation valid on the query at this time is getStatus() - all other operations will raise an exception.

MODIFIED	The query has been modified in some way since it was last validated.  Data may be fetched, but it will not necessarily correspond to the current definition.

INITIAL	The query has not yet been validated. Data may not be fetched.



Enumeration InitialSelection



InitialSelection is an enumeration class that represents whether a MemberQuery initially includes all of the members from its creating scope of none of the members.



ALL	The query should initially contain all of the members from the creating scope.

NONE	The query should initially be empty.





�OLAPAsynchronousSupport

Enumeration ProgressStatus



ProgressStatus is an enumeration class representing the set of all possible states of a ProgressMonitor.



OPERATION_CANCELED	The asynchronous operation has been canceled.

OPERATION_COMPLETED	The asynchronous operation has completed.

OPERATION_ERROR	An error occurred during the performance of the asynchronous operation.

OPERATION_IN_PROGRESS	The asynchronous operation is in progress.





�OLAPCommon

Enumeration ErrorCode



ErrorCode is an enumeration of the standard MDAPI status codes.



INVALID_INDEX	An index was out of range

SERVER_ERROR	Non-MDAPI error; refer to the nativeCode status value.�

WRONG_DIMENSIONALITY	The dimensions of a parameter are invalid or inconsistent with either another parameter or the object against which the method is invoked.

BUFFER_AT_END	The current cell position in the edge is already at an end of the cells in the buffer.

INVALID_VERTEX_SIZE	Too few or too many indices were specified in a vertex

INVALID_INDICES	An end index is smaller than the corresponding start index

NOT_VALIDATED	An operation that can be used only on a validated query was invoked on a query that has not been validated

DATATYPE_MISMATCH	The DataType of one or more cells does not match the DataType of the buffer extract method

BUFFER_INVALID	The buffer is invalid because the cube has been modified and revalidated.

ASYNCHRONOUS_ERROR	An error occurred during the execution of an asynchronous operation.

OPERATION_COMPLETED	An attempt to cancel an asynchronous operation failed because the operation had already completed.

BUSY	One of the objects involved in the operation is currently involved in an asynchronous operation and cannot be accessed.

OPERATION_CANCELED	An asynchronous operation was canceled.

INVALID_PROPERTY	The Property supplied is not defined for the receiver.

CONNECTION_CLOSED	Objects belonging to a Connection that has closed are being used.

EDGE_ERROR	The proposed operation cannot complete because an error associated with a CubeEdge has occurred.

DIFFERENT_CONNECTION	Objects belonging to different Connections are being combined.

EXPRESSION_TYPE_ERROR	A supplied ValueExpression has an invalid DataType for the operation being performed.

NAME_IN_USE	An attempt to create a new object failed because the supplied name was already in use.

INCOMPATIBLE_EXPRESSION	The supplied ValueExpression is not valid for the object with which it was used.

MISSING	The value is missing

INDEX_OUT_OF_BOUNDS	The index is greater than the zero-based index of the last element in the collection.

NOT_IN_COLLECTION	The specified object is not in the collection.



Enumeration SeverityCode



SeverityCode is an enumeration of the standard MDAPI error severity codes.



SEVERITY_ERROR	The operation failed because the parameters were invalid or inconsistent parameters or one or more of the objects was not in the appropriate state.

SEVERITY_SEVERE_ERROR	The operation failed because of an internal error.

SEVERITY_FATAL_ERROR	The operation failed because of an internal error.  The connection and all associated objects are invalid.





�OLAPMetaData

Enumeration HierarchyDirection



HierarchyDirection enumerates the options for specifying direction within a hierarchy.



HEIGHT	The direction is "up" the hierarchy from the leaves.

DEPTH	The direction is "down" the hierarchy from the root.



Enumeration DimensionType



Enumeration of the types of dimensions recognized by the MDAPI.



MEASURE_DIMENSION	The Dimension is a set of measures.

OTHER_DIMENSION	The Dimension is neither a measure dimension nor a time dimension..

TIME_DIMENSION	The Dimension is a time dimension



Enumeration MemberRelation



MemberRelation enumerates the possible sets of hierarchically related members that may be specified in API calls.



ROOT	The top of the hierarchy.  Roots have no parents.

PARENT	The parent of a given member in the hierarchy.  Each member has at most one parent.

CHILDREN	The children of member m are the members of the hierarchy that have m as their parent.

SIBLINGS	The siblings of member m are the members of the hierarchy that have m.parent as their parent.

ANTECEDENTS	The antecedents of member m are the members of the hierarchy that can be reached by following successive parent links from m up the hierarchy.

DESCENDANTS	The descendants of member m are the members of the hierarchy that can be reached by following successive child links from m down the hierarchy.



Enumeration DataType



This class enumerates the data types supported by the MDAPI, for use in identifying the data types that may be retrieved from cube cells, user-defined properties, and specified for use in filters.



DOUBLE	A double-precision, eight-byte, floating point number.

FLOAT	A single-precision, four-byte, floating point number.

LONG	A four-byte integer

TEXT	A string of characters.

BOOLEAN	A logical boolean value, capable of expressing the values True and False

DATE	A calendar date



�Sessions

The Session objects represents the starting point for an MDAPI application.  The Session class is the first to be instantiated.  From this object, an application can choose a driver, browse multi-dimensional schemata, and begin working with OLAP objects.

Although the entire MDAPI was specified by the OLAP Council, most of the classes are implemented by individual vendors.  The Session class is one of the few that is implemented by the OLAP Council itself.  All implementations of the MDAPI bundle the code that supports the Session class.  The class is installed with the first implementation to be installed on a computer.  Subsequent installations register with the existing Session.  Therefore, the Session class is aware of all MDAPI implementations installed on a computer, and it can load and use any installed driver.  The Session::openConnection() method is a convenience function that loads a driver and instructs it to open a schema in one step.

�Class Session



Before doing anything else with the API, an application must create a Session object.  The Session object is delivered by the OLAP Council, and is not implemented by the vendors. ��



Attributes

string apiVersion�Language language



Attribute Session::apiVersion (Read Only)

string apiVersion



The version of the MDAPI.  Format TBD.



Attribute Session::language (Read Only)

Language language



The default language for error messages produced in the domain of the Session.



Associations

ConnectionCollection openConnections�DriverCollection installedDrivers



Association Session::openConnections

ConnectionCollection openConnections



The set of all currently open connections attached to the session.



Association Session::installedDrivers

DriverCollection installedDrivers



The installed drivers, as a DriverCollection.  The collection is qualified by the name under which the driver was installed.��The list of drivers is maintained on each machine.�



Methods

Driver getDriverByName(string driverName)�Connection openConnection(string connectionString, string authenticationString)



Method Session::getDriverByName

Driver getDriverByName(string driverName)



Returns an instance of Driver, given a driver name.

Parameters

Type		Name		Description   		

string	driverName	Name of driver.



Returns

Driver



Possible Exceptions

OLAPException





Method Session::openConnection

Connection openConnection(string connectionString, string authenticationString)



Open a connection to a multi-dimensional schema.

Parameters

Type		Name		Description   		

string	connectionString	A string that identifies the schema to the driver

string	authenticationString	A string that provides authentication information about the user to the driver.



Returns

Connection



Possible Exceptions

OLAPException



�Connections

The Connection classes perform two fairly distinct roles.  An application uses the Connection classes to select a multi-dimensional schema and open a connection to it.  Once connected, the application uses the connection object as a starting point for exploring the metadata that represents the schema.

Choosing and connecting to a schema

Three classes support choosing and connecting to a schema. Driver represents an installed implementation of the MDAPI. Schema represents a particular multi-dimensional schema that can be reached through the driver. Connection represents a connection to a schema through a driver.

The Driver class is logically associated with all of the Schema objects that can be accessed through the driver.  However, unlike most of the one-to-many associations in the model, this one is not represented by a simple collection that has known bounds.  The reason for this has to do with the nature of schemata in an enterprise.  There may be many instances of an OLAP server, running on many different hosts scattered across the enterprise.  Each may provide many different schemata.  So there could well be thousands of schemata that can be reached through a driver, too many to instantiate in a collection.  The method Driver::getAvailableSchemata allows an application to search the available schemata for a particular name or for a wildcard.  It returns a SchemaCollection, which does have a fixed size and can be indexed.

The API also provides some help for an application that wishes to save information about a schema so that it can quickly revisit the schema without browsing for it.  Both the Driver and Schema classes have name attributes, called driverName and schemaName respectively.  Once an application has found an interesting schema, it can get the names of the driver and schema, and save them (e.g. as a bookmark).  Later, the application can retrieve the names and pass them as arguments to Session::openConnection().

Beginning metadata exploration

Each Connection object is associated with a number of Dimensions which describe the contents of the schema.  The Dimension collection is the main avenue by which an application would explore a schema.  A Connection is also associated with a number of ValueDescriptors, which describe the kinds of data that is contained by the schema.  Dimensions, ValueDescriptors, and the rest of the metadata classes are described in Chapter � REF _Ref404214908 \n �5�, � REF _Ref404214921 \* MERGEFORMAT �Metadata�.

� REF _Ref404139224 \* MERGEFORMAT �Figure 4-1� shows the Connection classes and their associations.



�

Figure � STYLEREF 1 \n �4�-� SEQ Figure \* ARABIC \r 1 �1� - Connection and associated classes

�Class Connection



The Connection class has three different duties in the MDAPI.  Its first role is to represent a connection between a client of the MDAPI and a data source.  To this end it contains operations to manage and close the connection.  Its second role is to act as the root object for all metadata navigation within the data source.  Its third role is to describe the capabilities and policies of the data source and the server.��All objects obtained through a Connection are valid only within the context of that Connection.  In particular, any attempt to mix objects obtained from different Connections is considered an error and will cause an exception to be raised.  Moreover, all objects obtained from a Connection become invalid once that connection is closed.  Any attempt to use these objects will result in an exception.��Instances of Connection can be thought of as  "hypercubes": the connection is made up of a number of "dimensions", one (and only one) of which is the "measures dimension".  A "cell" is defined by a combination of one "member" from each dimension.  Each cell contains a number of values, distinguished by "value descriptors".  An application can navigate to any of these objects from the Connection.��Connection is a subtype of PropertyScope.  Any properties contained in the properties collection attached to the connection are valid for all members of all dimensions contained in the connection.  Each Connection must contain at least two Properties, "name" and "caption".

Derived from

PropertyScope





Attributes

long maxEdges�long minEdges�Language language�LanguageCollection supportedLanguages



Attribute Connection::maxEdges (Read Only)

long maxEdges



The maximum number of edges that a cube can have.��Invariants:�(1)  maxEdges >= minEdges�(2)  maxEdges >=3



Attribute Connection::minEdges (Read Only)

long minEdges



The minimum number of edges that a cube can have.��Invariants:�(1)  minEdges <= maxEdges�(2)  minEdges <=3



Attribute Connection::language (Read/Write)

Language language



The default language for error messages produced in the domain of the Connection.



Attribute Connection::supportedLanguages (Read Only)

LanguageCollection supportedLanguages



The list of languages supported by the Connection.



Associations

Session session�Dimension measureDimension�DimensionCollection dimensions�ValueDescriptorCollection descriptors�ValueDescriptor defaultDescriptor�Property defaultProperty



Association Connection::session

Session session



The instance of Session to which the connection is attached



Association Connection::measureDimension

Dimension measureDimension



The unique instance of Dimension representing the measure dimension.



Association Connection::dimensions

DimensionCollection dimensions



The dimensions of the connection.



Association Connection::descriptors

ValueDescriptorCollection descriptors



The set of all ValueDescriptors defining cell and property values for the Connection.



Association Connection::defaultDescriptor

ValueDescriptor defaultDescriptor



The default descriptor. This is the distinguished instance of ValueDescriptor with the name "value" that defines the default value for each Measure and Property.  Whenever a Cube or MemberQuery is created, it will be associated with this instance of ValueDescriptor by default.



Association Connection::defaultProperty

Property defaultProperty



The default property. This is the distinguished instance of Property with the name "name" that defines the default property for each PropertyScope.  Whenever a MemberQuery is created, it will be associated with this instance of Property by default.



Methods

Cube newCube(string name, long numEdges, InitialSelection initialSelection)�closeConnection()



Method Connection::newCube

Cube newCube(string name, long numEdges, InitialSelection initialSelection)



Creates a new Cube object on the connection with the specified number of edges.  A MemberQuery instance will be created for each of the dimensions of the Connection.  Each MemberQuery will be oriented on one of the edges.  This initial orientation is vendor-specific, and may be discovered by examining the cube.��The new cube's lifetime will not extend past that of the connection.��Possible error codes include:�EDGE_ERROR		The given number of edges is invalid.�

Parameters

Type		Name		Description   		

string	name	Name for the cube. The MDAPI does not use this name in any way.

long	numEdges	The initial number of edges on the cube.

InitialSelection	initialSelection	If ALL, each MemberQuery instance initially contains all of the members of its dimension.  If  NONE, the MemberQuery instances are initially empty.



Returns

Cube



Possible Exceptions

OLAPException





Method Connection::closeConnection

closeConnection()



Immediately closes the connection, releasing any connection thread opened by Session::openConnection(). All resources allocated to that thread (including all metadata, query objects, and cube views) are released by the Connection object.��After this method is called, the object cannot be used again. ��Possible error codes include:�CONNECTION_CLOSED	The connection has already been closed.�

Returns

void



Possible Exceptions

OLAPException



�Class Driver



The Driver class represents a particular vendor's implementation of the MDAPI.



Attributes

string vendorName�string driverProduct�string driverVersion�string driverName�Language language



Attribute Driver::vendorName (Read Only)

string vendorName



The name of the vendor that implemented the driver.



Attribute Driver::driverProduct (Read Only)

string driverProduct



The name of the product of which the driver is a part.



Attribute Driver::driverVersion (Read Only)

string driverVersion



The version of the driver.  Format TBD.



Attribute Driver::driverName (Read Only)

string driverName



The name of the driver.  This name is unique over all implementations of the API.



Attribute Driver::language (Read Only)

Language language



The default language for error messages produced in the domain of the Driver.



Associations

SchemaCollection availableSchemata�Session session



Association Driver::availableSchemata

SchemaCollection availableSchemata



The schemata available through the driver.  Note that the availableSchemata collection may be of indeterminate size.



Association Driver::session

Session session



The instance of Session that manages all connections.



Methods

Connection openConnection(string connectionString, string authenticationString)�SchemaCollection getSchemataByName(string schemaName, boolean caseSensitive)



Method Driver::openConnection

Connection openConnection(string connectionString, string authenticationString)



Open a connection to a multi-dimensional schema.

Parameters

Type		Name		Description   		

string	connectionString	A string that identifies the schema to the driver

string	authenticationString	A string that provides authentication information about the user to the driver.



Returns

Connection



Possible Exceptions

OLAPException





Method Driver::getSchemataByName

SchemaCollection getSchemataByName(string schemaName, boolean caseSensitive)



Returns a collection of Schema objects, given a schema name or a wildcard.  The caseSensitive flag controls whether the search is case-sensitive.��Note that since multiple schemas may share the same wild-card pattern, this method returns a SchemaCollection object.

Parameters

Type		Name		Description   		

string	schemaName	The name or wild-card pattern of the schema to search for.

boolean	caseSensitive	A Boolean switch determining whether the search is case sensitive or not.



Returns

SchemaCollection



Possible Exceptions

OLAPException



�Class Schema



The Schema class represents a multi-dimensional schema that is accessible through a driver.



Attributes

string schemaVersion�string schemaName�string connectionString�Language language�LanguageCollection availableLanguages



Attribute Schema::schemaVersion (Read Only)

string schemaVersion



The version of the schema.  Format TBD.



Attribute Schema::schemaName (Read Only)

string schemaName



The name of the schema.  The name is unique over all schemata accessible through the driver.



Attribute Schema::connectionString (Read Only)

string connectionString



A string that identifies the schema to the driver.  This string is saved with the driver name in the registry when a schema is registered.  The user never sees the connection  string when a connection is opened by the usual process of discovering installed drivers and/or registered schemata, but it is used when an application opens a connection with Driver::openConnection().



Attribute Schema::language (Read/Write)

Language language



The default language for error messages produced in the domain of the Driver.  This may be changed by the client.



Attribute Schema::availableLanguages (Read Only)

LanguageCollection availableLanguages



The languages supported by this connection.



Associations

Driver driver



Association Schema::driver

Driver driver



The Driver for which the schema is valid.



Methods



�Metadata

Metadata objects represent the structure of the OLAP model.  The content of an OLAP model is identified by combinations of members from dimensions.  Metadata objects and collections of metadata objects form the basis for queries (cubes, filters, and sorts). 

The types of basic metadata provided by the MDAPI include dimensions, hierarchies, levels, members, measures (a subtype of measure), and dimension properties.  Dimensions are structured internally by hierarchies and levels.  Dimensions, hierarchies and levels all form scopes that contain one or more members.  The connection object forms the root object from which metadata is queried.  From the connection, the dimensions of the schema may be queried.  From each dimension, the members and other organizing metadata objects may be determined.

� REF _Ref404139427 \* MERGEFORMAT �Figure 5-1� shows the basic Metadata classes and their associations.



�

Figure � STYLEREF 1 \n �5�-� SEQ Figure \* ARABIC \r 1 �1� - Basic Metadata classes

Properties and value types

In addition to measures whose values appear in cells and are organized by two or more dimensions, the MDAPI recognizes application-defined properties of members, represented by the Property class.  These are essentially measures organized by only one dimension, and whose values may only be defined for a subset of that dimension (i.e. a level or a hierarchy).  Thus, they are a special enough case to warrant a class separate from that of Measure.

The MDAPI also recognizes supplemental data related to Measures and Properties.  Besides a value, measures and properties may have additional data items, such as a formatted display string for numeric values, an ‘exception’; flag that could suggest that a value fails to conform to some test and should be highlighted, or a read-only flag.  Each such data element is represented by a distinct ValueType.  ValueTypes are associated with their measure or property through a ValueDescriptor.

� REF _Ref404139633 \* MERGEFORMAT �Figure 5-2� shows the Measure and Property classes and their association with a collection of ValueType classes.  Note that the association is qualified by an ValueDescriptor class.



�

Figure � STYLEREF 1 \n �5�-� SEQ Figure \* ARABIC �2� - Measure and Property with ValueType

Dimension types

The MDAPI recognizes three types of dimensions: measures, time, and “other” (neither measure nor time).  All members found in the measure-typed dimension are of the Measure subtype of Member.  All members found in other dimensions will be of Member type.

Query support

Filters and sorts used in query definitions may use the ValueExpression class to refer to values of measures, properties, and members (see Chapter � REF _Ref404238908 \n �6�, � REF _Ref404238908 \* MERGEFORMAT �Queries�).  When a ValueExpression refers to a measure, it is often necessary to qualify that reference by specifying a particular member for some or all of the dimensions of the measure.  The MDAPI provides the MemberCollection class for this purpose.

�Class Member



A Member represents a member of a dimension. Members and combinations of members from different dimensions identify values for properties and cells in a cube.�



Attributes

string name



Attribute Member::name (Read Only)

string name



The name for the measure.��Invariant:�(1)  Measure.name must equal the value obtained from nameProperty.getValue(Member), where nameProperty is the "name" Property obtained from the appropriate Connection.



Associations

Dimension dimension



Association Member::dimension

Dimension dimension



The unique instance of Dimension that contains the Member instance.



Methods



�Class Property



A Property is a relationship between members of a dimension and data values, each value identified by a member along a dimension. A Property may be considered a variable that is dimensioned by a single dimension.��Any Property object will have a single data type. The getValue() method returns values for the property packaged as an OLAPAny  object.��In the future, there may be additional relationships specified between properties and property values with dimensions and members.�



Attributes

string name�DataType type



Attribute Property::name (Read Only)

string name



The name of the property.�



Attribute Property::type (Read Only)

DataType type



The data type of the property. ��Possible types are:��double,�float,�text,�long,�date,�boolean�



Associations

PropertyScope scope�ValueType valueType(ValueDescriptor descriptor)



Association Property::scope

PropertyScope scope



The PropertyScope that defines the set of all members having values for this property.



Association Property::valueType

ValueType valueType(ValueDescriptor descriptor)



The ValueType, if any, corresponding to the value descriptor.



Parameters

Type		Name		Description   		

ValueDescriptor 	descriptor	The value descriptor categorizing the ValueType.



Methods

OLAPAny getValue(Member member)



Method Property::getValue

OLAPAny getValue(Member member)



Returns the value of a property at a given member.��Exception codes include:��WRONG_DIMENSIONALITY	The member does not share the same dimension as the property.

Parameters

Type		Name		Description   		

Member	member	Member at which the value for this property is sought



Returns

OLAPAny



Possible Exceptions

OLAPException



�Class Measure



A Measure is a subclass of Member that functions more as a type of variable.��Every cell in a cube result that is intersected with a measure will have the same data type, defined by the 'Type' attribute of the measure.��Each measure may be associated with a different set of other dimensions from other measures.��Invariants: �(1)  Measure::dimension.dimensionType = MEASURE_DIMENSION;�(2)  Measure::dimensions is a subset of connection.dimensions, where connection is the Connection in which the member is valid;�(3)  Measure::dimensions cannot include the measures dimension.

Derived from

Member





Attributes

long scale�long precision�DataType type



Attribute Measure::scale (Read Only)

long scale



The power of 10 by which the number was adjusted before storing. For example, a value of 2 means that the measure has been multiplied by 100 prior to storing and should be divided by 100 to obtain the correct value. A value of 0 means that no scaling is required. �



Attribute Measure::precision (Read Only)

long precision



The number of decimal places to display. Any display formatting performed should be performed after the number has been transformed by any applicable scale (see the Scale attribute above).�



Attribute Measure::type (Read Only)

DataType type



The data type of ValueType contained in the Measure that corresponds to the default ValueDescriptor.�



Associations

DimensionCollection dimensions�ValueType valueType(ValueDescriptor descriptor)



Association Measure::dimensions

DimensionCollection dimensions



The dimensions that "dimension" (identify values for) this measure.  Each Measure may have a different set of dimensions.



Association Measure::valueType

ValueType valueType(ValueDescriptor descriptor)



The ValueType, if any, corresponding to the value descriptor.



Parameters

Type		Name		Description   		

ValueDescriptor 	descriptor	The value descriptor categorizing the ValueType.



Methods



�Class PropertyScope



PropertyScope is an abstract type representing a set of Members sharing a common set of properties.  The instances of Property contained in the properties association are valid for all Members within the scope.  The precise meaning of "members within the scope" is deferred to the subtypes of PropertyScope.



Attributes





Associations

PropertyCollection scopeProperties



Association PropertyScope::scopeProperties

PropertyCollection scopeProperties



The properties defined to this scope. ��Properties defined to an enclosing scope are not included in the collection. For example, every property available to a dimension is applicable to any level within that dimension, but when obtaining the properties for any level in that dimension, the dimension-scoped properties will not be included.



Methods

Property getPropertyByName(string name)�PropertyCollection getAllProperties()



Method PropertyScope::getPropertyByName

Property getPropertyByName(string name)



Returns the property defined for the PropertyScope instance whose name matches the given string.  This method can be used to get a property defined for the PropertyScope instance or inherited from an enclosing scope.

Parameters

Type		Name		Description   		

string	name	Name of property to get.



Returns

Property



Possible Exceptions

OLAPException





Method PropertyScope::getAllProperties

PropertyCollection getAllProperties()



Returns a collection of all the properties available for this PropertyScope instance.  This includes properties defined for the instance and properties inherited from an enclosing scope.

Returns

PropertyCollection



Possible Exceptions

OLAPException



�Class MemberScope



A MemberScope is an abstract type representing a set of Members.  MemberScopes come in two basic varieties: fixed scopes, such as Dimension and Level, represent fixed sets of members; the other kind of scope is MemberQuery, which represents a set of members defined by a query.  The set of members returned by a fixed query will stay the same between queries provided no database updates occur; the set of members returned by MemberQuery, on the other hand, may depend on such factors as time of day.��Despite these differences, all MemberScopes have one thing in common: all the instances of Member contained in a single MemberScope must belong to the same Dimension.  In particular, each MemberScope is a subset of some Dimension.��The instances of Member contained in the fixed MemberScopes cannot be directly accessed by the kinds of operations found on collection classes.  Instead the client must create an instance of MemberQuery to specify the precise set of members required, and must then use the buffer classes to extract the members.

Derived from

PropertyScope





Attributes

string name



Attribute MemberScope::name (Read Only)

string name



The name of the metadata object.  Names may be stored in the MD schema or artificially generated, depending on the server and interface implementation.�



Associations

Dimension dimension



Association MemberScope::dimension

Dimension dimension



The instance of Dimension of which the MemberScope instance is a subset.



Methods

MemberQuery newQuery(string name, InitialSelection initialSelection)



Method MemberScope::newQuery

MemberQuery newQuery(string name, InitialSelection initialSelection)



Create a new MemberQuery based on the dimension of the MemberScope instance.

Parameters

Type		Name		Description   		

string	name	The name of the new instance of MemberQuery.  The name has no semantic meaning, and is not required to be unique.

InitialSelection	initialSelection	If ALL, the query initially contains all of the members of the MemberScope instance.  If  NONE, the query is initially empty.



Returns

MemberQuery



Possible Exceptions

OLAPException



�Class Level



A Level represents a level of a hierarchy and organizes members according to structural relations within the hierarchy.��

Derived from

MemberScope





Attributes





Associations

Dimension dimension



Association Level::dimension

Dimension dimension



The dimension for which the level is defined.



Methods



�Class Hierarchy



A Hierarchy represents a collection of members of dimensions related in hierarchical fashion. Each Hierarchy contains one or more levels (represented by Level objects) which collect members sharing a common place within the hierarchy.��Invariants: �(1)  Hierarchy::members is equal to the union of all Hierarchy::levels.members;�(2)  For all distinct L1, L2 in Hierarchy::levels, L1.members does not intersect L2.members;�(3)  For all distinct L1, L2 in Hierarchy::levels with L1 preceding L2 in the level ordering, there cannot exist members M1 in L1 and M2 in L2 such that M1 is a descendant of M2 in the hierarchy.  (In other words, the arrangement of levels follows the topological ordering of the members in the hierarchy).

Derived from

MemberScope





Attributes





Associations

LevelCollection levels



Association Hierarchy::levels

LevelCollection levels



The Levels for the hierarchy.



Methods

MemberQuery relationQuery(MemberRelation relationship, Member member)



Method Hierarchy::relationQuery

MemberQuery relationQuery(MemberRelation relationship, Member member)



Return a new MemberQuery representing the specified set of relations of the Hierarchy instance.��aHierarchy.relationQuery(aRelationship, aMember)��is equivalent to��query = aMember.dimension.newQuery(NONE)�query.addRelations(aMember, aRelationship, aHierarchy)��Possible error codes include:�WRONG_DIMENSIONALITY The hierarchy does not share the same dimension as the member.

Parameters

Type		Name		Description   		

MemberRelation	relationship	The MemberRelation defining the relationship between the given member and the set of members to be returned by the new query.

Member	member	The Member upon which the relationship is based.



Returns

MemberQuery



Possible Exceptions

OLAPException



�Class Dimension



A Dimension collects one or more members in hierarchies. A dimension is the top-level organization for members of a particular domain type, such as time, products, measures, geographical locations, etc.��The MDAPI recognizes two special types of dimensions in addition to a generic dimension: time and measures. A member of a measure dimension (modeled by Measure) has additional attributes. A member of a time dimension has no additional attributes, but will be of special interest to many applications.��Invariants:�(1)   Dimension::members = the union of all Dimension::hierarchies.members.��

Derived from

MemberScope





Attributes

DimensionType dimensionType



Attribute Dimension::dimensionType (Read Only)

DimensionType dimensionType



An enumeration value that describes the type of the dimension. Available types are:��TIME_DIMENSION�MEASURE_DIMENSION�OTHER_DIMENSION



Associations

HierarchyCollection hierarchies�Hierarchy defaultHierarchy�LevelCollection levels



Association Dimension::hierarchies

HierarchyCollection hierarchies



The hierarchies defined for the dimension. Each dimension will have one or more hierarchies.



Association Dimension::defaultHierarchy

Hierarchy defaultHierarchy



The default hierarchy for the dimension, if there is any default defined. Otherwise, a null object.



Association Dimension::levels

LevelCollection levels



The levels defined for the dimension.



Methods



�Class ValueType



A ValueType represents a particular type of data for a Property or Measure.



Attributes

DataType type



Attribute ValueType::type (Read Only)

DataType type



The data type of the values for the ValueType.�



Methods



�Class ValueDescriptor



A ValueDescriptor maps an  Property or Measure to an individual value in a cell.  Given a Property or Measure, a ValueDescriptor,  and a suitable tuple (which, in the case of MemberScope and Property is a degenerate single-member tuple). the API can produce a single data value.  Each Connection has a ValueDescriptor named  "value".



Attributes

string name



Attribute ValueDescriptor::name (Read Only)

string name



A name for the  ValueDescriptor that is unique within the context of the connection.



Methods



�Class OLAPAny



OLAPAny is a single data type which may be used to represent data values of any data type recognized by the MDAPI.��



Attributes





Methods



�Queries

There is no such thing, in the OLAP world, as a final, definitive query.  Instead, each query can be seen as the springboard from which to dive into deeper exploration.  Summary information can be expanded to include details of interest, while details can be summarized to reveal large scale trends.  Even a fixed set of data can be viewed from many perspectives--pages can become columns, and dimensions nested in the rows can be pivoted onto the pages.  

In accordance with this view, the OLAP API models queries as objects whose definitions can be incrementally modified even after they have been used to fetch data.  Queries can be sorted, filtered, then sorted again.  Compare this to the relational model defined by SQL where every query stands alone and it is up to the client application to generate SQL code from scratch every time the user performs an operation that modifies the query.

The operations on query objects in the OLAP API have been chosen to closely match the kinds of manipulations performed by users of OLAP tools.  For example, there are operations on queries that drill up and down on data in dimensions, and operations that pivot and rotate dimensions on edges of cubes.

There are two basic kinds of query in the MDAPI: the Cube and the MemberQuery.  The Cube represents a data query, while the MemberQuery represents a metadata query.  These are presented in a seamless fashion, so that metadata retrieval is performed in exactly the same way as data retrieval.  A third important class is ValueExpression, which is used to specify complex filter and sort conditions.

Dimension member queries

The MemberQuery represents a query on one Dimension.  The interface of MemberQuery is designed to allow easy incremental modification of the query.  They are used:

As a part of the Cube definition to define the contents of Edges;

As stand alone metadata queries.

A MemberQuery specifies the data to be retrieved about the dimension with:

A collection of Properties for which data is to be retrieved

A collection of ValueDescriptors that determine the ValueTypes to be retrieved for each property

MemberQueries can be modified incrementally in a number of ways.

Adding or removing Members found in other MemberScopes;

Drilling up or down on Members already in the MemberQuery;

Filtering using predicates defined as ValueExpressions (see below);

Sorting based on either hierarchies or values defined by ValueExpressions.

Cube queries

Cubes represent multi-dimensional queries in the classic OLAP sense.  Each cube is composed of a number of edges and a block of content.  Each edge is composed of a number of MemberQueries, which in turn represent dimensions.  The content is composed of measure cells, where each cell is uniquely identified by taking one member from the result set of each of the component MemberQueries.

A Cube specifies the Properties to be retrieved on the edges by providing a set of Property objects for each MemberQuery.  The names of dimension members can be retrieved by including the Property named “name”, and other Properties can be retrieved by including other properties in addition to or instead of the “name” Property.

A Cube specifies the ValueTypes to be retrieved for each property by providing a set of ValueDescriptors for each MemberQuery.  The value of a Property can be retrieved by including the ValueDescriptor named “value”, and other ValueTypes can be retrieved by including other ValueDescriptors in addition to or instead of the “value” ValueDescriptor.  The Cube also specifies the ValueTypes to be retrieved for the measures in the body of the cube by specifying a set of ValueDescriptors for the Cube itself.

The Cube can be modified in two basic ways:

Modifying the component MemberQueries as described above;

Pivoting and rotating dimensions onto different edges.

� REF _Ref404140240 \* MERGEFORMAT �Figure 6-1� shows the MemberScope subclass that is used for query definition, MemberQuery, and its associations.



�

Figure � STYLEREF 1 \n �6�-� SEQ Figure \* ARABIC \r 1 �1� - MemberScope query subclasses

Query expressions

A ValueExpression represents a function of one Dimension.  So, for each Member of the Dimension, the ValueExpression (theoretically) returns a single value.  ValueExpressions are used to specify filter and sort criteria to the MemberQuery.  

There are several kinds of ValueExpression in the OLAP API:

Property value expressions represent the value of a Property for the Member;

Cell value expressions represent the value of a fully qualified cell in the hypercube;

Comparison expressions represent a comparison (e.g. >, (, () between two other Value Expressions;

ParameterHolder expressions represent simple values and can be used to parameterize a query definition. ValueExpression class and its associations.



�

Figure � STYLEREF 1 \n �6�-� SEQ Figure \* ARABIC �2� - ValueExpression and associated classes

The example code in � REF _Ref409414412 \* MERGEFORMAT �Figure 6-3� gives an idea of how a client would select only those Members of Geography whose population was greater than 100,000.

Dimension geography;

Property population;

...

// First create the predicate “population > 100000”

MemberQuery query = geography.newQuery(“a query”);

ValueExpression populationValue = query.newPropertyValue(population);

ParameterHolder lowerLimit = query.newParameterHolder( “lower limit”,

   OLADDataType.long, 100000);

ValueExpression predicate = populationValue.opGT (lowerLimit);



// Now use the predicate to filter the query result set.

query.keep(predicate);



// To change the query to population > 50,000 the client could do this;

lowerLimit.setValue(50000);

Figure � STYLEREF 1 \n �6�-� SEQ Figure \* ARABIC �3� - MemberQuery selection example

Query validation

Before data can be fetched from any query (both Cubes and MemberQueries), the query must be “validated”.  This is achieved by sending the query the message validate().  Once this has occurred, the client can do two things.  First, they can fetch data using either the simple getCell() method or by using the more efficient buffer classes; secondly, they may continue to modify the query.  Once the query has been validated, the client can continue to fetch data even after the basic query definition has been modified.  This allows for the fact that a client may wish to modify the query in more than one way before re-validating it.  There is no limit to the number of times a query may be modified and validated.

� REF _Ref404140372 \* MERGEFORMAT �Figure 6-4� shows the Cube class and the associated classes that together constitute the query definition.  The methods shown can be called on any query, whether it has been validated or not.



�

Figure � STYLEREF 1 \n �6�-� SEQ Figure \* ARABIC �4� - Cube and associated query definition classes

� REF _Ref404140437 \* MERGEFORMAT �Figure 6-5� also shows the Cube and associated classes.  But the methods shown in this diagram can be called only after a query has been validated.



�

Figure � STYLEREF 1 \n �6�-� SEQ Figure \* ARABIC �5� - Cube and associated query result classes

�Class MemberQuery



The MemberQuery type represents a set of Members (a MemberScope) that is determined by query.  Its interface is designed to allow for continuous modification by the client.  The implementation is free to choose any internal representation of the query.��MemberQuery instances are created in three ways:��(1)  When a Cube is created, one MemberQuery will be placed on an edge for each dimension.�(2)  As part of the creation of more exotic Cubes.  The methods addAllFrom(), removeAllFrom(), and keepAllFrom() take MemberScopes (including other MemberQueries) as parameters.  While may queries can be constructed without these methods, some cannot.  The method MemberScope::newQuery() thus allows more complicated queries.�(3)  As a mechanism to retrieve metadata.  By creating a MemberQuery, the client is able to make complex metadata queries.  See also the method relationQuery() on Hierarchy.

Derived from

MemberScope





Attributes





Associations

ParameterHolderCollection parameters�ValueDescriptorCollection descriptors



Association MemberQuery::parameters

ParameterHolderCollection parameters



The ParameterHolders that have been created for the MemberQuery instance.  All (named) parameters used by any ValueExpressions for the query will be included.



Association MemberQuery::descriptors

ValueDescriptorCollection descriptors



The ValueDescriptors specifying the values to be returned for the requested properties.  By default this set is initialized to contain the distinguished instance Connection:: defaultDescriptor.



Methods

keep(ValueExpression expression)�add(ValueExpression expression)�remove(ValueExpression expression)�removeMember(Member member)�addMember(Member member)�addAllFrom(MemberScope scope)�removeAllFrom(MemberScope scope)�keepAllFrom(MemberScope scope)�addRelations(Member member, MemberRelation relationship, Hierarchy hierarchy)�removeRelations(Member member, MemberRelation relationship, Hierarchy hierarchy)�addGeneration(Hierarchy hierarchy, HierarchyDirection direction, long distance)�keepRelations(Member member, MemberRelation relationship, Hierarchy hierarchy)�sortByValue(ValueExpression basedOn, SortOrder order)�sortByHierarchy(Hierarchy hierarchy, SortOrder order)�sortByLevel(Hierarchy hierarchy, SortOrder order)�resetNaturalSortOrder()�resort()�selectAll()�selectNone()�ValueExpression newPropertyValueExpression(Property property, ValueDescriptor descriptor)�ValueExpression newCellValueExpression(MemberCollection context, ValueDescriptor descriptor)�ParameterHolder newParameter(string name, DataType dataType, OLAPAny value)�MemberQuery clone()�validate()�ProgressMonitor validateAsync()�long resultCount()�ParameterHolder getParameterByName(string name)�addDescriptor(ValueDescriptor descriptor)�removeDescriptor(ValueDescriptor descriptor)�addProperty(Property property)�removeProperty(Property property)�EdgeLayerBuffer newBuffer(long start, long end)�select(ValueExpression expression)�selectAllFrom(MemberScope scope)�selectRelations(Member member, MemberRelation relationship, Hierarchy hierarchy)�selectGeneration(Hierarchy hierarchy, HierarchyDirection direction, long distance)�QueryStatus getStatus()�addMembers(MemberCollection members)



Method MemberQuery::keep

keep(ValueExpression expression)



Filter the current set of Members to include only those for whom the ValueExpression is true.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.��

Parameters

Type		Name		Description   		

ValueExpression	expression	A Boolean-valued instance of ValueExpression to be used as a predicate.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   expression.query = self�(2)   expression.dataType = BOOLEAN



Post Conditions

(1)  The new return set is equal to the set of all members of the old return set for which the value of expression is true.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::add

add(ValueExpression expression)



Add all members from the dimension for which the ValueExpression is true to the current set of members.  The new members are appended to the result set.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�

Parameters

Type		Name		Description   		

ValueExpression	expression	A Boolean-valued instance of ValueExpression to be used as a predicate.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   expression.query = self�(2)   expression.dataType = BOOLEAN



Post Conditions

(1)  The new return set is equal to the old return set unioned with the set of all members of query.dimension for which the value of expression is true.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::remove

remove(ValueExpression expression)



Filter the current set of Members to include only those for whom the ValueExpression is false.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�

Parameters

Type		Name		Description   		

ValueExpression	expression	A Boolean-valued instance of ValueExpression to be used as a predicate.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   expression.query = self�(2)   expression.dataType = BOOLEAN�



Post Conditions

(1)  The new return set is equal to the set of all members of the old return set for which the value of expression is false;�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::removeMember

removeMember(Member member)



Remove a particular Member from the MemberQuery instance's result set.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The member does not belong to the same dimension as the query.�

Parameters

Type		Name		Description   		

Member	member	The instance of Member to be explicitly removed from the MemberQuery instance's result set.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   member.dimension = self.dimension



Post Conditions

(1)  The new return set is equal to the old return set minus the given member;�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::addMember

addMember(Member member)



Add a particular Member to the MemberQuery instance's result set.  The new member is appended to the result set.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The member does not belong to the same dimension as the query.�

Parameters

Type		Name		Description   		

Member	member	The instance of Member to be explicitly added to the MemberQuery instance's result set.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   member.dimension = self.dimension



Post Conditions

(1)  The new return set is equal to the old return set plus the given member;�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::addAllFrom

addAllFrom(MemberScope scope)



Add all members defined by 'scope' to the return set of the MemberQuery instance.    The new members are appended to the result set.��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as the parameter has different dimensionality than the MemberQuery instance.�

Parameters

Type		Name		Description   		

MemberScope	scope	The MemberScope whose members are to be added to the MemberQuery instance's result set.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   scope.dimension = self.dimension



Post Conditions

(1)  The new return set is equal to the old return set unioned with the return set of the parameter scope;�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::removeAllFrom

removeAllFrom(MemberScope scope)



Remove all members defined by 'scope' from the return set of the MemberQuery instance.��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as parameter has different dimensionality than the MemberQuery instance.�

Parameters

Type		Name		Description   		

MemberScope	scope	The MemberScope whose members are to be removed from the MemberQuery instance's result set.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   scope.dimension = self.dimension



Post Conditions

(1)  The new return set is equal to the old return set minus the return set of the parameter scope.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above. 



Method MemberQuery::keepAllFrom

keepAllFrom(MemberScope scope)



Keep only those members contained in  'scope' from the return set of the MemberQuery instance.��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as parameter has different dimensionality than the MemberQuery instance.�

Parameters

Type		Name		Description   		

MemberScope	scope	The MemberScope whose members are to be kept in the MemberQuery instance's result set.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   scope.dimension = self.dimension



Post Conditions

(1)  The new return set is equal to the old return set intersected with the return set of the parameter scope.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::addRelations

addRelations(Member member, MemberRelation relationship, Hierarchy hierarchy)



Add all the relations of 'member' in 'hierarchy' defined by 'relationship' to the return set of the MemberQuery instance.  The new members are inserted into the result set, immediately following 'member'.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension than the one the MemberQuery instance is querying over.�

Parameters

Type		Name		Description   		

Member	member	The instance of Member whose relations are to be added to the Member Query instance's result set.

MemberRelation	relationship	The MemberRelation defining the relationship between the given member and the set of members to be added.

Hierarchy	hierarchy	The instance of Hierarchy defining the relationships.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   member.dimension = self.dimension;�(2)   hierarchy.dimension = self.dimension



Post Conditions

(1)  The new return set will be equal to the old return set unioned with all relations of member in hierarchy.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::removeRelations

removeRelations(Member member, MemberRelation relationship, Hierarchy hierarchy)



Remove all the relations of 'member' in 'hierarchy' defined by 'relationship' from the return set of the MemberQuery instance.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension than the one the MemberQuery instance is querying over.�

Parameters

Type		Name		Description   		

Member	member	The instance of Member whose relations are to be removed from the MemberQuery instance's result set.

MemberRelation	relationship	The MemberRelation defining the relationship between the given member and the set of members to be removed.

Hierarchy	hierarchy	The instance of Hierarchy defining the relationships.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   member.dimension = self.dimension�(2)   hierarchy.dimension = self.dimension



Post Conditions

(1)  The new return set will be equal to the old return set minus all relations of member in hierarchy.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::addGeneration

addGeneration(Hierarchy hierarchy, HierarchyDirection direction, long distance)



Adds the collection of members that exist at the specified position in the hierarchy.  The new members are appended to the result set.��If the direction is HEIGHT, then the collection is of members at 'distance' units from the leaf level. �If the direction is DEPTH, then the collection is of members at 'distance' units from the root level.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension to the one the MemberQuery instance is querying over.�INVALID_INDEX		The supplied distance parameter is invalid.�

Parameters

Type		Name		Description   		

Hierarchy	hierarchy	The instance of Hierarchy defining the generations.

HierarchyDirection	direction	A HierarchyDirection representing the direction in which to count generations.

long	distance	The number of the generation.  The first generation is number zero.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)  hierarchy.dimension = self.dimension;�(2) distance >=0.



Post Conditions

(1)   The new result set will be the union of the old result set with the set of all members of self.dimension in the specified generation of the given hierarchy.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::keepRelations

keepRelations(Member member, MemberRelation relationship, Hierarchy hierarchy)



Remove all members currently returned by the MemberQuery instance except the relations of 'member' in 'hierarchy' defined by 'relationship'.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension to the one the MemberQuery instance is querying over.�

Parameters

Type		Name		Description   		

Member	member	The instance of Member whose relations are to be kept in the MemberQuery instance's result set.

MemberRelation	relationship	The MemberRelation defining the relationship between the given member and the set of members to be kept.

Hierarchy	hierarchy	The instance of Hierarchy defining the relationships.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   member.dimension = self.dimension�(2)   hierarchy.dimension = self.dimension



Post Conditions

(1)  The new return set will be equal to the old return set intersected with all relations of member in hierarchy.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::sortByValue

sortByValue(ValueExpression basedOn, SortOrder order)



Sort the result set by the specified value, preserving any previous sorting where the new sort order does not distinguish between Members��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have a valid data type.�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�

Parameters

Type		Name		Description   		

ValueExpression	basedOn	A ValueExpression representing the value the sort is to performed on.

SortOrder	order	The SortOrder indicating the sort direction.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)  basedOn.query = self



Post Conditions

(1) The new result set will contain the same members as the old result set, but will be sorted according to the following rule: �   (a) The result set is partitioned by putting all members whose value for "basedOn" into the same group.�   (b) Within each of these groups the old ordering applies.�   (c) The groups are ordered according to the natural ordering of the value associated to each group, either in ascending or descending order according to the value of the "order" parameter.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::sortByHierarchy

sortByHierarchy(Hierarchy hierarchy, SortOrder order)



Sort the result set topologically by the specified hierarchy, preserving any previous sorting where the new sort order does not distinguish between Members��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension to the one the MemberQuery instance is querying over.�

Parameters

Type		Name		Description   		

Hierarchy	hierarchy	The Hierarchy over which the dimension is to be sorted.

SortOrder	order	The SortOrder indicating the sort direction.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)  hierarchy.dimension=self.dimension



Post Conditions

(1)  The new result set will contain the same members as the old result set, but will be sorted according to the following rule: �(a) The result set is partitioned by putting all members sharing the same parent (with respect to the given hierarchy) into the same group.�(b) Within each of these groups the old ordering applies.�(c) If the value of "order" is DESCENDING, then the members are arranged so that every member occurs before all of its descendants, but after both the previous member of its group and all of the previous member's descendants.�(c) If the value of "order" is ASCENDING, then the members are arranged so that every member occurs after all of its descendants, but before both the previous member of its group and all of the previous member's descendants.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::sortByLevel

sortByLevel(Hierarchy hierarchy, SortOrder order)



Sort the result set by levels of the specified hierarchy, preserving any previous sorting where the new sort order does not distinguish between Members.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension than the one the MemberQuery instance is querying over.�

Parameters

Type		Name		Description   		

Hierarchy	hierarchy	The Hierarchy over which the dimension is to be sorted.

SortOrder	order	The SortOrder indicating the sort direction.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)  hierarchy.dimension=self.dimension



Post Conditions

(1)  The new result set will contain the same members as the old result set, but will be sorted according to the following rule: �(a) The result set is partitioned by putting all members into groups sharing the same level.�(b) Within each of these groups the old ordering applies.�(c) The groups are ordered according to order of the levels, depending on the value of the order parameter.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::resetNaturalSortOrder

resetNaturalSortOrder()



Remove all sort criteria from the query and restore the 'natural' sort order of the selection.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns





Possible Exceptions

OLAPException



Post Conditions

(1)  The new result set will be identical to the old, but the members will be presented in the "natural database ordering".�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::resort

resort()



Resort the collection by applying, in the order that they were first applied, all previous sort commands issued since either the query was first created or since the resetNaturalSortOrder() method was invoked.��Example:��Imagine we start with the set of members NY, MA, CA, WI.�(1) If we sort alphabetically by name, the result set will become CA, MA, NY, WI�(2) If we then drill down on NY, the result set becomes CA, MA, NY, 'Albany', 'Buffalo', 'New York', WI�(3) If we invoke the resort() method, the result set becomes   'Albany',  'Buffalo', CA, MA, 'New York', NY, WI��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns





Possible Exceptions

OLAPException



Post Conditions

(1)  The new result set will be identical to the old, but the members will be sorted according to the sort criteria already applied to the query.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::selectAll

selectAll()



Sets the query to select all Members from the Dimension and clears all sorting criteria.    This is equivalent to self.addAllFrom(self.dimension) followed by self.resetNaturalSortOrder().��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns





Possible Exceptions

OLAPException



Post Conditions

(1)  The new result set will contain all members of the dimension.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::selectNone

selectNone()



Sets the query to select no Members from the Dimension and clears all sorting criteria.�This is equivalent to self.removeAllFrom(self.dimension) followed by self.resetNaturalSortOrder().��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns





Possible Exceptions

OLAPException



Post Conditions

(1)  The new result set will be empty, and all previous sort criteria will be forgotten.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::newPropertyValueExpression

ValueExpression newPropertyValueExpression(Property property, ValueDescriptor descriptor)



Return an instance of ValueExpression representing the value of a property.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�INVALID_PROPERTY		The Property passed as parameter is not valid for the dimension of the query.�

Parameters

Type		Name		Description   		

Property	property	An instance of Property whose values are of interest.

ValueDescriptor	descriptor	A ValueDescriptor specifying which value is to be obtained from the property.



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)  property is a valid Property for self.dimension or one of its subsets(Hierarchies and Levels);�(2)  property.valueType(descriptor) exists.



Post Conditions

Denote the MemberQuery instance as self, the returned instance of ValueExpression as newValueExpression, and the value of newValueExpression for a given member as newValueExpression(member).��(1) newValueExpression.dataType = property.valueType(descriptor).dataType;�(2) newValueExpression.dimension = self.dimension;�(2) newValueExpression(member) = property.getValue(member, descriptor) if member is valid for the property, return a missing value otherwise.



Method MemberQuery::newCellValueExpression

ValueExpression newCellValueExpression(MemberCollection context, ValueDescriptor descriptor)



Return an instance of ValueExpression representing the value of a cell.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The supplied MemberCollection does not correctly qualify all dimensions other than the dimension of the MemberQuery instance.�

Parameters

Type		Name		Description   		

MemberCollection	context	The MemberCollection used to qualify the reference.  The collection must include a Member for every dimension except the one over which the query is performed.

ValueDescriptor	descriptor	A ValueDescriptor specifying which value is to be obtained from the cell.



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)  self.dimension is not the measures dimension;�(2)  The context must contain one Member from each of the dimensions other than self.dimension - one of these must be an instance of Measure;�(3)  If 'measure' denotes the instance of Measure contained in context, then measure.valueType(descriptor) exists.



Post Conditions

Denote the MemberQuery instance as self, the returned instance of ValueExpression as newValueExpression, and the value of newValueExpression for a given member as newValueExpression(member).��(1) newValueExpression.dataType = measure.valueType(descriptor).dataType;�(2) newValueExpression.dimension = self.dimension;�(2) The value of newValueExpression(member) is equal to the cell value for the combination of members specified by context together with the given member.



Method MemberQuery::newParameter

ParameterHolder newParameter(string name, DataType dataType, OLAPAny value)



Return a new instance of ParameterHolder.��Possible error codes include:��NAME_IN_USE   The given name is already taken.

Parameters

Type		Name		Description   		

string	name	The name of the parameter, if any.  If the name is given, then it must be unique within the scope of the member query.

DataType	dataType	The data type of the value in the ParameterHolder.  While the value of the parameter may change after creation, the data type remains constant.

OLAPAny	value	The initial/default value of the parameter.



Returns

ParameterHolder



Possible Exceptions

OLAPException



Pre Conditions

(1) The type of value matched the given dataType;�(2) There is not already a parameter with the same name for the MemberQuery instance.



Post Conditions

(1)  If the name is not the empty string, then the ParameterHolder will be added to the parameters collection of the MemberQuery instance.�(2)  The new instance of ParameterHolder will be initialized to the given type, name, and value. 



Method MemberQuery::clone

MemberQuery clone()



Create a complete copy of the query definition.  Specifically, this method will create a new instance of MemberQuery mirroring the definition of the original together with copies of all attached ValueExpression instances.  No metadata class will be copied.  (So, for example, both the original and the copy will point to the same instance of Dimension.)��The new instance of MemberQuery will begin in an unvalidated state even if the original had been validated.  It can be modified like any other member query, and its state is independent of the original.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns

MemberQuery



Possible Exceptions

OLAPException



Post Conditions

(1)   newMemberQuery.getStatus = INITIAL



Method MemberQuery::validate

validate()



Performs validation of query's definition, which will enable querying of member and property information from query if successful. To the degree that a vendor's implementation of this function also performs a query and fetches data, it is a synchronous operation.��The method will raise an exception if the MemberQuery instance is part of a larger query (such as a cube).��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns

void



Possible Exceptions

OLAPException



Pre Conditions

(1)  self.getStatus  < > .VALIDATING



Post Conditions

(1)  self.getStatus = VALIDATED



Method MemberQuery::validateAsync

ProgressMonitor validateAsync()



This operation has the same effect as the validate() method, but is performed asynchronously.  Control returns immediately to the caller while the cube validation occurs in the background.  The method returns an instance of ProgressMonitor, which allows the client to monitor progress of the asynchronous operation.  The member query will not be usable until the validation has concluded.��The method will raise an exception if the MemberQuery instance is part of a larger query (such as a cube).��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns

ProgressMonitor



Possible Exceptions

OLAPException



Pre Conditions

(1)  self.getStatus <> VALIDATING



Post Conditions

(1)  self.getStatus = VALIDATING.�(2) Once the asynchronous operation has completed, the post conditions of the validate() method apply.



Method MemberQuery::resultCount

long resultCount()



Returns the number of members in the query.  This may only be called after a successful validation of the query.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�NOT_VALIDATED		The query has not yet been validated, so no data is available.�

Returns

long



Possible Exceptions

OLAPException



Pre Conditions

(1)  self.getStatus = VALIDATED or self.getStatus = MODIFIED





Method MemberQuery::getParameterByName

ParameterHolder getParameterByName(string name)



Return the named parameter, if such exists.  Raise an exception otherwise.��Possible error codes include:�BUSY			The query is currently being validated asynchronously.�NOT_FOUND		The parameter has not been found.

Parameters

Type		Name		Description   		

string	name	The name of the query parameter.



Returns

ParameterHolder



Possible Exceptions

OLAPException





Method MemberQuery::addDescriptor

addDescriptor(ValueDescriptor descriptor)



Add an instance of ValueDescriptor to the collection contained by the MemberQuery instance.  The set of ValueDescriptors attached to the MemberQuery is part of the query definition.  Each property of the members can have multiple values.  For example, each property may have, in addition to the basic value, a formatted value, a background color, and a foreground color.  Each kind of value present in the cell is represented by an instance of ValueDescriptor.  (So, in the example above, there would be four instances, named "value", "formatted value", "background color", and "foreground color".) The only values that will be fetched by the query are those in the descriptors set attached to the member query.  When the member query is first created it will contain only the default ValueDescriptor (the one named "value" above).  If the client needs the additional property values, it must explicitly add the appropriate instances of ValueDescriptor to the query  by calling this method. ��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Parameters

Type		Name		Description   		

ValueDescriptor	descriptor	The instance of ValueDescriptor to be added.



Returns





Possible Exceptions

OLAPException



Post Conditions

(1)  descriptor will be in the set self.descriptors.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::removeDescriptor

removeDescriptor(ValueDescriptor descriptor)



Remove an instance of ValueDescriptor from the collection contained by the MemberQuery instance.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Parameters

Type		Name		Description   		

ValueDescriptor	descriptor	The instance of ValueDescriptor to be removed.



Returns





Possible Exceptions

OLAPException



Post Conditions

(1)  descriptor will not be in the set self.descriptors.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::addProperty

addProperty(Property property)



Add an instance of Property to the collection contained by the MemberQuery instance.  The set of Properties attached to the MemberQuery is part of the query definition.  The only properties whose values will be fetched by the query are those in the property set attached to the cube.  When the member query is first created it will contain only the default Property (the one named "name").  If the client needs to fetch the values of any additional properties, it must explicitly add the appropriate instances of Property to the query by calling this method.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�INVALID_PROPERTY		The Property passed as parameter is not valid for the dimension of the query.�

Parameters

Type		Name		Description   		

Property	property	The Property to be added.



Returns





Possible Exceptions

OLAPException



Post Conditions

(1)  property will be in the set self.properties.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::removeProperty

removeProperty(Property property)



Remove a Property from the MemberQuery instance's collection.  Values for this property will no longer be fetched by the query.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�INVALID_PROPERTY		The Property passed as parameter is associated with the query.�

Parameters

Type		Name		Description   		

Property	property	The Property to be removed.



Returns





Possible Exceptions

OLAPException



Post Conditions

(1)  property will not be in the set self.properties.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::newBuffer

EdgeLayerBuffer newBuffer(long start, long end)



Create a new edge layer buffer for the member query, specifying start and end indices in the set of members represented by the query.��Possible error codes include:��INVALID_INDICES		An end index is smaller than the corresponding start index�BUSY			The query is currently being validated asynchronously.�NOT_VALIDATED		The query has not yet been validated, so no data is available.�

Parameters

Type		Name		Description   		

long	start	the start index in the set of members represented by the query

long	end	the end index in the set of members represented by the query



Returns

EdgeLayerBuffer



Possible Exceptions

OLAPException



Pre Conditions

(1)  self.getStatus = VALIDATED





Method MemberQuery::select

select(ValueExpression expression)



Select only those members from the dimension for which the ValueExpression is true, regardless of the current selection.  (This operation effectively restarts the selection process.)��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�

Parameters

Type		Name		Description   		

ValueExpression	expression	A Boolean-valued instance of ValueExpression to be used as a predicate.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   expression.query = self�(2)   expression.dataType = BOOLEAN



Post Conditions

(1)   The new set is defined to be the set of all members in self.dimension for which the value of expression is true.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::selectAllFrom

selectAllFrom(MemberScope scope)



Select only those members defined by 'scope', regardless of the current selection.  (This operation effectively restarts the selection process.)��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as the "scope" parameter and the MemberQuery instance have different dimensionality.�

Parameters

Type		Name		Description   		

MemberScope	scope	The MemberScope whose members are to be selected.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   scope.dimension = self.dimension



Post Conditions

(1)   The new return set is defined to be the return set of the parameter 'scope'.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::selectRelations

selectRelations(Member member, MemberRelation relationship, Hierarchy hierarchy)



Select only the relations of 'member' in 'hierarchy' defined by 'relationship', regardless of the current selection. (This operation effectively restarts the selection process.)��Possible error codes include: �BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension to the one the MemberQuery instance is querying over.�

Parameters

Type		Name		Description   		

Member	member	The instance of Member whose relations are to be selected.

MemberRelation	relationship	The MemberRelation defining the relationship between the given member and the set of members to be selected.

Hierarchy	hierarchy	The instance of Hierarchy defining the relationships.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   member.dimension = self.dimension;�(2)   hierarchy.dimension = self.dimension



Post Conditions

(1)  The new return set will be equal to set of all members of the self.dimension related to the given member in the given hierarchy as specified by the given relation.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::selectGeneration

selectGeneration(Hierarchy hierarchy, HierarchyDirection direction, long distance)



Selects only the collection of members that exist at the specified position in the hierarchy, regardless of the current selection. (This operation effectively restarts the selection process.)��If the direction is HEIGHT, then the collection is  of members at 'distance' units from the leaf level. �If the direction is DEPTH, then the collection is of members at 'distance' units from the root level.��Possible error codes include:��BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension to the one the MemberQuery instance is querying over.�INVALID_INDEX		The supplied distance parameter is invalid.�

Parameters

Type		Name		Description   		

Hierarchy	hierarchy	The instance of Hierarchy defining the generations.

HierarchyDirection	direction	A HierarchyDirection representing the direction in which to count generations.

long	distance	The number of the generation.  The first generation is number zero.



Returns





Possible Exceptions

OLAPException



Pre Conditions

(1)   hierarchy.dimension = self.dimension;�(2) distance >=0.



Post Conditions

(1)   The new result set will be the set of all members of self.dimension in the specified generation of the given hierarchy.�(2)  If the old value of self.getStatus was INITIAL, then it remains unchanged.  For any other value it becomes MODIFIED.�(3)  If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.



Method MemberQuery::getStatus

QueryStatus getStatus()



Return the current status of the query.

Returns

QueryStatus





Method MemberQuery::addMembers

addMembers(MemberCollection members)



Add the Members in the given collection to the MemberQuery instance's result set.  Members already in the result set are skipped, and the remaining members are appended to any members already in the result set, retaining their order.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The members do not all belong to the same dimension as the query.�

Parameters

Type		Name		Description   		

MemberCollection	members	An array of Members to add to the result set of the MemberQuery instance.



Returns





Possible Exceptions

OLAPException



�Class ValueExpression



Represents a function that returns a value for each member of the dimension associated with a query.  Each ValueExpression instance returns a value of a specified data type.  A ValueExpression instance may refer to other ValueExpression instances to support the representation of an expression.��With the exception of the subclass ParameterHolder, instances of ValueExpression are immutable.



Attributes

DataType dataType�string displayString



Attribute ValueExpression::dataType (Read Only)

DataType dataType



The DataType of the value.



Attribute ValueExpression::displayString (Read Only)

string displayString



An implementation-specific string that represents the value (for debugging/display purposes).



Associations

MemberQuery query



Association ValueExpression::query

MemberQuery query



The MemberQuery for which this value expression is defined.  The value expression logically returns a single value for each member of the dimension of the query.



Methods

ValueExpression opGT(ValueExpression rhs)�ValueExpression opGE(ValueExpression rhs)�ValueExpression opLT(ValueExpression rhs)�ValueExpression opLE(ValueExpression rhs)�ValueExpression opEQ(ValueExpression rhs)�ValueExpression opNE(ValueExpression rhs)�ValueExpression isMissing()�ValueExpression isBetween(ValueExpression lhs, ValueExpression rhs, boolean strictly)�ValueExpression isInTopN(ParameterHolder number)�ValueExpression isInBottomN(ParameterHolder number)�ValueExpression isInPercentile(ParameterHolder lhs, ParameterHolder rhs)



Method ValueExpression::opGT

ValueExpression opGT(ValueExpression rhs)



Returns a ValueExpression representing the result of the binary operator "greater than".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Type		Name		Description   		

ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression  "this ValueExpression instance > rhs"



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)   self.query = rhs.query;�(2)   self.dataType = rhs.dataType;�(3)   self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   newValueExpression (member) =  (self (member) > rhs (member));�(4)   If self (member) or rhs (member)  is the missing value, then newValueExpression (member) is also the missing value.



Method ValueExpression::opGE

ValueExpression opGE(ValueExpression rhs)



Returns a ValueExpression representing the result of the binary operator "greater than or equal".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Type		Name		Description   		

ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression  "this ValueExpression instance >=rhs".



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)   self.query = rhs.query;�(2)   self.dataType = rhs.dataType;�(3)   self.dataType is one of  DOUBLE, FLOAT, LONG, TEXT, DATE .�



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   newValueExpression (member) =  (self (member) >= rhs (member));�(4)   If self (member) or rhs (member)  is the missing value, then newValueExpression (member) is also the missing value.�



Method ValueExpression::opLT

ValueExpression opLT(ValueExpression rhs)



Returns a ValueExpression representing the result of the binary operator "less than".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Type		Name		Description   		

ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression  "this ValueExpression instance < rhs".



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)   self.query = rhs.query;�(2)   self.dataType = rhs.dataType;�(3)   self.dataType is one of  DOUBLE, FLOAT, LONG, TEXT, DATE .�



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   newValueExpression (member) =  (self (member) < rhs (member));�(4)   If self (member) or rhs (member)  is the missing value, then newValueExpression (member) is also the missing value.�



Method ValueExpression::opLE

ValueExpression opLE(ValueExpression rhs)



Returns a ValueExpression representing the result of the binary operator "less than or equal".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Type		Name		Description   		

ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression  "this ValueExpression instance <= rhs".



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)   self.query = rhs.query;�(2)   self.dataType = rhs.dataType;�(3)   self.dataType is one of  DOUBLE, FLOAT, LONG, TEXT, DATE .�



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   newValueExpression (member) =  (self (member)  <= rhs (member));�(4)   If self (member) or rhs (member)  is the missing value, then newValueExpression (member) is also the missing value.�



Method ValueExpression::opEQ

ValueExpression opEQ(ValueExpression rhs)



Returns a ValueExpression representing the result of the binary operator "equals".��If the data type is text, wild-card pattern matching is allowed.  Allowable wildcard characters are:��*	match any number of characters�%	match any single character��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Type		Name		Description   		

ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression  "this ValueExpression instance = rhs".



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)   self.query = rhs.query;�(2)   self.dataType = rhs.dataType;�(3)   self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE, BOOLEAN.�



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   newValueExpression (member) =  (self (member) = rhs (member));�(4)   If self (member) or rhs (member)  is the missing value, then newValueExpression (member) is also the missing value.



Method ValueExpression::opNE

ValueExpression opNE(ValueExpression rhs)



Returns a ValueExpression representing the result of the binary operator "not equals".��If the data type is text, wild-card pattern matching is allowed.  Allowable wildcard characters are:��*	match any number of characters�%	match any single character��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Type		Name		Description   		

ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression  "this ValueExpression instance <> rhs".



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)   self.query = rhs.query;�(2)   self.dataType = rhs.dataType;�(3)   self.dataType is one of double, float, long, text, date, boolean.�



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   newValueExpression (member) =  (self (member) <> rhs (member));�(4)   If self (member) or rhs (member)  is the missing value, then newValueExpression (member) is also the missing value.



Method ValueExpression::isMissing

ValueExpression isMissing()



Returns a ValueExpression representing the test "is the value of the ValueExpression instance missing".��

Returns

ValueExpression



Possible Exceptions

OLAPException



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   newValueExpression (member) is true if and only if self (member) is the missing value.



Method ValueExpression::isBetween

ValueExpression isBetween(ValueExpression lhs, ValueExpression rhs, boolean strictly)



Returns a ValueExpression representing the result of the test "is between values x and y".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expressions passed as parameters "lhs" and/or "rhs" do not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expressions passed as parameters "lhs" and/or "rhs" belong to another query.�

Parameters

Type		Name		Description   		

ValueExpression	lhs	The ValueExpression to be used as the left hand side of the expression  "lhs < ValueExpression instance < rhs

ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression  "lhs < ValueExpression instance < rhs".

boolean	strictly	A Boolean value that determines whether the new expression is of the form "lhs < ValueExpression instance < rhs" (strictly = true) or "lhs<= ValueExpression instance <= rhs" (strictly = false).



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)   self.query = lhs.query = rhs.query;�(2)   self.dataType = lhs.dataType = rhs.dataType;�(3)   self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.��



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   If the parameter strictly is equal to true, then�        (3a) newValueExpression (member) =  (self (member) > lhs (member) and self (member) < rhs (member));�       otherwise�       (3b) newValueExpression (member) =  (self (member) >= lhs (member) and self (member) <= rhs (member));�(4)   If any one of self (member), rhs (member), or lhs (member) is the missing value, then newValueExpression (member) is also the missing value.



Method ValueExpression::isInTopN

ValueExpression isInTopN(ParameterHolder number)



Returns a ValueExpression representing the result of the test "is among the top N values".  ��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "number" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "number" belongs to another query.�

Parameters

Type		Name		Description   		

ParameterHolder	number	The value "N" in the predicate "is this one of the top N values?".



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)   self.query = number.query�(2)   number.dataType = LONG�(3)   self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   For a set of members "M", the value of newValueExpression for the members of M is calculated as follows:�(3.1)	Calculate the value of the self(member) for each member in M;�(3.2)	Let S be the list of members in M sorted according to the natural ordering of these values (removing any members such that self(member) is missing);�(3.3)	Let N be the value of the parameter "number", and let T be the subset of M containing the first N members of S;�(3.4)	For any member in M, the value of newValueExpression(member) is true if and only if member is in the set T.



Method ValueExpression::isInBottomN

ValueExpression isInBottomN(ParameterHolder number)



Returns a ValueExpression representing the result of the test "is among the bottom N values".  ��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "number" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "number" belongs to another query.�

Parameters

Type		Name		Description   		

ParameterHolder	number	The value "N" in the predicate "is this one of the often N values?"



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)   self.query = number.query�(2)   number.dataType = LONG�(3)   self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   For a set of members "M", the value of newValueExpression for the members of M is calculated as follows:�(3.1)	Calculate the value of the self(member) for each member in M;�(3.2)	Let S be the list of members in M sorted according to the natural ordering of these values (removing any members such that self(member) is missing);�(3.3)	Let N be the value of the parameter "number", and let T be the subset of M containing the last N members of S;�(3.4)	For any member in M, the value of newValueExpression(member) is true if and only if member is in the set T.



Method ValueExpression::isInPercentile

ValueExpression isInPercentile(ParameterHolder lhs, ParameterHolder rhs)



Returns a ValueExpression representing the result of the test "is in the percentile between the given lower and upper bounds".  ��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expressions passed as parameters "lhs" and/or "rhs" do not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expressions passed as parameters "lhs" and/or "rhs" belong to another query.�

Parameters

Type		Name		Description   		

ParameterHolder	lhs	The ParameterHolder to be used as the left hand side of the predicate "is this value in the lhs% to rhs% range?"

ParameterHolder	rhs	The ParameterHolder to be used as the right hand side of the predicate "is this value in the lhs% to rhs% range?"



Returns

ValueExpression



Possible Exceptions

OLAPException



Pre Conditions

(1)   self.query = lower.query = upper.query�(2)   lower.dataType= upper.dataType = DOUBLE�(3)   0 <= lower.value < upper.value <=1�(4)   self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�



Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1)   newValueExpression.query = self.query;�(2)   newValueExpression.dataType = BOOLEAN;�(3)   For a set of members "M", the value of newValueExpression for the members of M is calculated as follows:�(3.1)	Calculate the value of the self(member) for each member in M;�(3.2)	Let S be the list of members in M sorted according to the natural ordering of these values (removing any members such that self(member) is missing);�(3.3)	Let L be the value of the parameter "lower", and let U be the value of the parameter "upper".  Define T be the subset of M containing the members of S between L * count(S) and U * count(S).�(3.4)	For any member in M, the value of newValueExpression(member) is true if and only if member is in the set T.

�Class ParameterHolder



Represents a value to be used in expressions.   ��The data type of the ParameterHolder must be fixed at creation time, but the value itself may be changed at any time by the client.��Note that changing the value in the ParameterHolder will require any query whose definition depends on it to be revalidated.

Derived from

ValueExpression





Attributes

OLAPAny value�string name



Attribute ParameterHolder::value (Read/Write)

OLAPAny value



The current value of the query parameter.  Text values may include wild-card patterns.



Attribute ParameterHolder::name (Read Only)

string name



The name to be used to identify the parameter of the member query.  If the parameter holder is given a non-empty name, then it will be registered in the collection of the parameter collection of the MemberQuery  that created it.  The name must be unique within the scope of the query.  When a query is copied using the clone() method, the attached parameter holders are also copied; those that were named in the original query will be accessible in the copy.



Methods



�Class Cube



A Cube represents a query definition and, following validation, a result set.  It holds both query definition information in the form of MemberQueries, and result information.  A cube may be in an invalidated state or a validated state. When invalidated, calling the getCell() method on a cube or some methods of the CubeEdge will fail. When a cube is first created, it is in an invalidated state. It will also become invalid for the purposes of fetching member information and cell data from it whenever its query definition is modified. Successful execution of the validate() call is required to put the cube in a validated state.��Dimensions are oriented onto the cube's associated CubeEdge objects; each dimension is mapped to only one edge of the cube.���



Attributes

string name



Attribute Cube::name (Read/Write)

string name



The name of the cube.  This is a place to attach descriptive information to the cube.  It has no semantic meaning within the model, and is not constrained to be unique.



Associations

CubeEdgeCollection edges�ValueDescriptorCollection descriptors



Association Cube::edges

CubeEdgeCollection edges



The CubeEdge objects connected to the Cube instance.�



Association Cube::descriptors

ValueDescriptorCollection descriptors



The ValueDescriptor objects that specify the values to be returned for each cell.  By default this set is initialized to contain the distinguished instance Connection:: defaultDescriptor.



Methods

pivot(Dimension dimension, CubeEdge toEdge, Dimension beforeDim)�rotate(Dimension dim1, Dimension dim2)�setContext(MemberCollection cellRef, HierarchyCollection hiers)�setOrientation(CubeEdge edge, DimensionCollection dimensions)�validate()�ProgressMonitor validateAsync()�OLAPAny getCell(long[] coordinates, ValueDescriptor descriptor)�Cube clone()�Buffer newBuffer(long[] start, long[] end)�CubeEdge createEdge()�removeEdge(CubeEdge edge)�addDescriptor(ValueDescriptor descriptor)�removeDescriptor(ValueDescriptor descriptor)�MemberQuery getSubQuery(Dimension dim)�QueryStatus getStatus()�CubeEdge getOrientation(Dimension dimension)�pivotToNestLevel(Dimension dimension, CubeEdge toEdge, long nestLevel)



Method Cube::pivot

pivot(Dimension dimension, CubeEdge toEdge, Dimension beforeDim)



Places the given dimension on the given CubeEdge "toEdge".  The MemberQuery associated within the dimension is removed from the nestedQueries collection of its original edge, and is inserted into the nestedQueries collection of toEdge just prior to the MemberQuery representing the Dimension "beforeDim".  If beforeDim is not specified, the dimension is appended to the collection.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR 		The edge is not valid for this cube.�

Parameters

Type		Name		Description   		

Dimension	dimension	Dimension to orient on cube.

CubeEdge	toEdge	The edge to orient the Dimension onto.

Dimension	beforeDim	Dimension of toEdge before which to place Dimension dimension.



Returns

void



Possible Exceptions

OLAPException





Method Cube::rotate

rotate(Dimension dim1, Dimension dim2)



Swaps the orientation of two dimensions. The dimension of dim1 will be placed at the edge and nesting level of dim2, and dim2 will be placed at the edge and nesting level of dim1. If dim1 and dim2 are the same dimension, then this operation has no effect.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�

Parameters

Type		Name		Description   		

Dimension	dim1	First dimension being swapped

Dimension	dim2	Second dimension being swapped



Returns

void



Possible Exceptions

OLAPException





Method Cube::setContext

setContext(MemberCollection cellRef, HierarchyCollection hiers)



This method combines several common cube selection and orientation operations into one step to establish outer boundaries for the N-dimensional data cube that will be the subject of the cube's view.��Given a collection of members 'cellRef' and a collection of corresponding hierarchies in 'hiers', it performs two distinct operations for each dimension that has a member in 'cellRef': ��· Restricts the dimension to only the given member and its descendants in the hierarchy;�· Maps the dimension to a predictable nesting level on the final edge of the cube.��For each hierarchy in 'hiers', there must be a corresponding member in 'cellRef'.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.      

Parameters

Type		Name		Description   		

MemberCollection	cellRef	Collection of members, no more than one member per dimension, each defining the relative root or top of the hierarchy for the context

HierarchyCollection	hiers	Collection of hierarchies, one per member listed in cellRef, each defining the hierarchy for the context.



Returns

void



Possible Exceptions

OLAPException





Method Cube::setOrientation

setOrientation(CubeEdge edge, DimensionCollection dimensions)



Orients the specified dimensions on the given edge of the cube. Note that more than one dimension can be placed along, or "nested" on, a given edge (i.e. row, column, or page). In this case the first dimension in the array is innermost (i.e. closest to the data) and the last dimension in the array is outermost (i.e. farthest from the data). It is possible to have no dimensions along a given edge (e.g. no dimensions in the column edge) during query definition, but not at the point of validation.��Note that a dimension cannot be in two edges at the same time. For example, the "product" dimension cannot be both in the row and the column edges. The API will implement intelligent defaults. For example, assume that the "product" dimension is in the row edge, and setOrientation() is called to place the "product" dimension in the page edge. The "product" dimension will be removed from the row edge.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR 		Edge passed in is not valid.�INVALID_DIMENSIONS	Same dimension repeated more than once in dimensions.�

Parameters

Type		Name		Description   		

CubeEdge	edge	The edge that dimensions are to be oriented onto.

DimensionCollection	dimensions	Ordered set of dimensions to be oriented onto edge.



Returns

void



Possible Exceptions

OLAPException





Method Cube::validate

validate()



Performs validation of cube's definition and applied query objects, which will enable querying of member and cell information from cube if successful. To the degree that a vendor's implementation of this function also performs a query and fetches data, it is a synchronous operation: all querying and fetching will take place before the function returns.��Possible error codes include:�EDGE_ERROR		One of the edges of the cube has no dimensions.�BUSY			The cube is currently being validated asynchronously.�

Returns

void



Possible Exceptions

OLAPException





Method Cube::validateAsync

ProgressMonitor validateAsync()



This operation has the same effect as the validate() method, but is performed asynchronously.  Control returns immediately to the caller while the cube validation occurs in the background.  The method returns an instance of ProgressMonitor, which allows the client to monitor progress of the asynchronous operation.  The cube will not be usable until the validation has concluded.��Possible error codes include:�EDGE_ERROR		One of the edges of the cube has no dimensions.�BUSY			The cube is currently being validated asynchronously.�

Returns

ProgressMonitor



Possible Exceptions

OLAPException





Method Cube::getCell

OLAPAny getCell(long[] coordinates, ValueDescriptor descriptor)



Retrieves a data value from the specified cell.��Possible error codes include:�INVALID_INDEX 		The co-ordinates were invalid for the cube�NOT_VALIDATED 		Cube definition has no been validated.�BUSY				The cube is currently being validated asynchronously.�INVALID_DESCRIPTOR 	The requested value is unavailable because the ValueDescriptor was not specified as part of the query definition.� _NOT_VALIDATED		The cube has not been successfully validated, so no data access is possible.�

Parameters

Type		Name		Description   		

long[]	coordinates	An array of zero-based indices specifying the coordinates of the cell to get.

ValueDescriptor	descriptor	The value descriptor that specifies which value is required from the cell.  The descriptor must be one of the descriptors attached to the cube prior to cube validation.



Returns

OLAPAny



Possible Exceptions

OLAPException





Method Cube::clone

Cube clone()



Create a complete copy of the cube query definition.  Specifically, this method will create a new instance of Cube together with new copies of the CubeEdges and MemberQueries contained in the original cube.  No metadata class will be copied.  (So, for example, both the original and the copy will point to the same instances of Dimension.)��The new instance of Cube will begin in an unvalidated state even if the original had been validated.  It can be modified like any other cube, and its state is independent of the original.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�

Returns

Cube



Possible Exceptions

OLAPException





Method Cube::newBuffer

Buffer newBuffer(long[] start, long[] end)



Create a new buffer for the cube, specifying Cartesian start and end vertices in the cube for the buffer.��Possible error codes include:�BUSY				The cube is currently being validated asynchronously.�INVALID_VERTEX_SIZE	The wrong number of indices in vertex�INVALID_INDICES    	   	An end edge index is smaller than the corresponding start index�NOT_VALIDATED  		The cube has not been validated

Parameters

Type		Name		Description   		

long[]	start	starting vertex in the cube for the buffer, as an array of longs, each of which is an index into an edge

long[]	end	ending vertex in the cube for the buffer, as an array of longs, each of which is an index into an edge



Returns

Buffer



Possible Exceptions

OLAPException



Pre Conditions

(1)  self.getStatus = VALIDATED





Method Cube::createEdge

CubeEdge createEdge()



Creates a new instance of CubeEdge and attaches it to the cube.  The new edge will be empty by default.  This method will raise an exception if either the number of edges would exceed the limit imposed by the implementation or if it would exceed the number of dimensions.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR		The cube can have no more edges.  �

Returns

CubeEdge



Possible Exceptions

OLAPException





Method Cube::removeEdge

removeEdge(CubeEdge edge)



Remove an existing instance of CubeEdge from the collection of edges of the cube.  The method will raise an exception if there are any dimensions on the edge being removed.  (The client can move the dimensions from the edge using the pivot() method.)  This method will also raise an exception if the number of edges would be below the minimum limit imposed by the implementation.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR		The edge cannot be removed from the cube. �

Parameters

Type		Name		Description   		

CubeEdge	edge	The instance of CubeEdge to be removed.



Returns





Possible Exceptions

OLAPException





Method Cube::addDescriptor

addDescriptor(ValueDescriptor descriptor)



Add an instance of ValueDescriptor to the collection contained by the cube.  The set of ValueDescriptors attached to the cube is part of the query definition.  Each cell in the cube can have multiple values.  For example, each cell may have, in addition to the basic value, a formatted value, a background color, and a foreground color.  Each kind of value present in the cell is represented by an instance of ValueDescriptor.  (So, in the example above, there would be four instances, named "value", "formatted value", "background color", and "foreground color".) The only values that will be fetched by the cube are those in the descriptors set attached to the cube.  When the cube is first created it will contain only the default ValueDescriptor (the one named "value" above).  If the client needs the additional cell values, it must explicitly add the appropriate instances of ValueDescriptor to the cube by calling this method. ��Possible error codes include:�BUSY		The cube is currently being validated asynchronously.

Parameters

Type		Name		Description   		

ValueDescriptor	descriptor	The ValueDescriptor to be added.



Returns





Possible Exceptions

OLAPException





Method Cube::removeDescriptor

removeDescriptor(ValueDescriptor descriptor)



Remove an instance of ValueDescriptor from the collection contained by the cube.  The values corresponding to the descriptor will no longer be fetched.��Possible error codes include:�BUSY		The cube is currently being validated asynchronously.

Parameters

Type		Name		Description   		

ValueDescriptor	descriptor	The instance of ValueDescriptor to be removed.



Returns





Possible Exceptions

OLAPException





Method Cube::getSubQuery

MemberQuery getSubQuery(Dimension dim)



Return the instance of MemberQuery contained in the cube that corresponds to the given dimension.��Possible error codes include:�BUSY		The cube is currently being validated asynchronously.

Parameters

Type		Name		Description   		

Dimension	dim	The dimension whose MemberQuery is required.



Returns

MemberQuery





Method Cube::getStatus

QueryStatus getStatus()



Return the current status of the query.

Returns

QueryStatus





Method Cube::getOrientation

CubeEdge getOrientation(Dimension dimension)



Gets the edge on which the given dimension is oriented.��Possible error codes include:�BUSY		The cube is currently being validated asynchronously�

Parameters

Type		Name		Description   		

Dimension	dimension	The dimension for which to get the orientation.



Returns

CubeEdge





Method Cube::pivotToNestLevel

pivotToNestLevel(Dimension dimension, CubeEdge toEdge, long nestLevel)



Places the given dimension on the given CubeEdge "toEdge".  The MemberQuery associated within the dimension is removed from the nestedQueries collection of its original edge, and is inserted into the nestedQueries collection of toEdge at zero-based index 'nestLevel'.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR 		The edge is not valid for this cube.�

Parameters

Type		Name		Description   		

Dimension	dimension	The dimension to orient onto an edge

CubeEdge	toEdge	The edge onto which to orient the dimension.

long	nestLevel	The zero-based index in the ordered collection of dimensions on the edge at which to place the dimension.



Returns

void



Possible Exceptions

OLAPException



�Class CubeEdge



A CubeEdge represents one edge of a Cube.��A cube edge is either validated or invalidated. All cube edges of a cube are validated when the cube is validated. The following methods will only work when the cube edge is validated:��resultCount()�getCellIndex()�getIndexMembers()�



Attributes

boolean suppressMissing�boolean suppressZeros



Attribute CubeEdge::suppressMissing (Read/Write)

boolean suppressMissing



A boolean value which indicates whether the query should filter out all member tuples for which the cell values are empty for all combinations of members on the other edges.  (The cell values used are taken to be those associated with the default ValueDescriptor.)��If both suppressMissing and suppressZeros are true, then filter out all member tuples for which the cell values are either missing or zero for all combinations of members on the other edges.



Attribute CubeEdge::suppressZeros (Read/Write)

boolean suppressZeros



A boolean value which indicates whether the query should filter out all member tuples for which the cell values are zero for all combinations of members on the other edges.  (The cell values used are taken to be those associated with the default ValueDescriptor.)��If both suppressMissing and suppressZeros are true, then filter out all member tuples for which the cell values are either missing or zero for all combinations of members on the other edges.



Associations

Cube cube�MemberQueryCollection nestedQueries



Association CubeEdge::cube

Cube cube



The Cube of which the CubeEdge is an edge.



Association CubeEdge::nestedQueries

MemberQueryCollection nestedQueries



The MemberQueries that collectively define the contents of the edge.  This is an ordered list.  The first MemberQuery defines the slowest varying set of members.  The set of members returned by each subsequent MemberQuery will be nested under the tuples above it.  Mathematically, the result set of the edge is equal to the cross-product of the result sets of the nested member queries (from which tuples may be suppressed if suppressMissing or suppressZeros is true).



Methods

DimensionCollection getDimensions()�long resultCount()�long getCellIndex(MemberCollection reference)�MemberCollection getIndexMembers(long index)�long getNestingOfDimension(Dimension dimension)



Method CubeEdge::getDimensions

DimensionCollection getDimensions()



Fetches the current list and order of dimensions along the cube edge. The first dimension in the array is the innermost dimension (the one "closest" to the data), while the last dimension is the outermost dimension.��Possible error codes include:�BUSY			The cube of which this is an edge is currently being validated asynchronously.�

Returns

DimensionCollection



Possible Exceptions

OLAPException





Method CubeEdge::resultCount

long resultCount()



Returns the number of cells that may be found along this cube edge.��Possible error codes include:�NOT_VALIDATED	The cube has not been successfully validated, so no data access is possible.�BUSY			The cube of which this is an edge is currently being validated asynchronously.

Returns

long



Possible Exceptions

OLAPException





Method CubeEdge::getCellIndex

long getCellIndex(MemberCollection reference)



Returns the zero-based cell index along the edge for the given combination of members.��Possible error codes include:�BUSY			The cube of which this is an edge is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The members given in the MemberCollection do not correspond to the dimensions on the edge.�NOT_VALIDATED	The cube has not been successfully validated, so no data access is possible.

Parameters

Type		Name		Description   		

MemberCollection	reference	Set of members, one from each dimension along edge



Returns

long



Possible Exceptions

OLAPException





Method CubeEdge::getIndexMembers

MemberCollection getIndexMembers(long index)



Returns a collection of members which map to the given zero-based cell index along the cube edge. ��Possible error codes include:��INVALID_INDEX 	index is either less than 0 or greater than the number of members returned by getExtent().�NOT_VALIDATED	The cube has not been successfully validated, so no data access is possible.�BUSY			The cube of which this is an edge is currently being validated asynchronously.��

Parameters

Type		Name		Description   		

long	index	Cell index along edge



Returns

MemberCollection



Possible Exceptions

OLAPException





Method CubeEdge::getNestingOfDimension

long getNestingOfDimension(Dimension dimension)



Returns the nesting level of the given dimension on the edge.��Possible error codes include:�NOT_IN_COLLECTION		The dimension is not oriented on the edge

Parameters

Type		Name		Description   		

Dimension	dimension	The Dimension for which to find the nesting level.



Returns

long



Possible Exceptions

OLAPException



�Fetch

After it has defined a query, most applications will retrieve data.  Even after filtering, the query may represent much more data than an application can use at once.  Therefore, the MDAPI allows an application to designate a portion of a cube to be retrieved, and create a buffer for it.

Much of the information in a report or table is really supplemental information of one kind or another.  Dimension member names are often short and cryptic, and may even be just unique identifiers.  Rather than using dimension names, report headers and labels will often show descriptive names, or captions.  The MDAPI represents captions and other supplemental information about dimension members as Properties.  Rather than retrieving numeric data values and formatting them, client applications may retrieve a display string, already formatted on the server.  Or, an application might retrieve a flag for each data cell that indicates that the value is exceptional in some way so that it is displayed in a different color.  The MDAPI represents supplemental data values as ValueTypes, and they are accessible through ValueDescriptors.  To allow a consistent treatment  in the query, the MDAPI represents dimension member names as a special Property called ‘Name’.  The MDAPI represents data values with a special value type for the ValueDescriptor named ‘Value’.  General information about Properties, ValueTypes, and ValueDescriptors is in Chapter � REF _Ref404238890 \n �5�, � REF _Ref404238896 \* MERGEFORMAT �Metadata�.  Information about how to use these classes in queries is in Chapter � REF _Ref404238908 \n �6�, � REF _Ref404238910 \* MERGEFORMAT �Queries�.

Retrieving data always requires a call to the server.  In some implementations, a query may not be fully evaluated until an application asks for the data.  Therefore, retrieving data may be a lengthy operation.  Applications must be able to control when this occurs.  The MDAPI guarantees that all requested data is retrieved with the buffer.

Once an application has retrieved data, it should be able to display its report or table without performing any operations that require additional calls to the server.  In particular, the application should not have to access metadata objects, as the metadata objects may reside only on the server in some implementations.  Therefore, the MDAPI retrieves all properties and value types that are specified for the query in the buffer.

After retrieving a buffer, the application still has to extract data into native data structures before it can use them.  Therefore, the MDAPI provides a variety of techniques for navigating the contents of a buffer and extracting data from it.

The common OLAP operations drill, rotate, and pivot are query refinement operations which are implemented as methods on the cube object and have operands that are metadata objects.  Since a table or report will be generated entirely from the buffer, the only direct mapping from a table or report to MDAPI objects will be to buffer objects.  Therefore, the MDAPI provides methods for navigating back to the cube and metadata from the buffer.

Buffer classes

Three Buffer classes correspond to the three cube classes that form the core of the query definition:

The Buffer class corresponds to the Cube query class.

The EdgeBuffer class corresponds to the Edge query class.

The EdgeLayerBuffer class corresponds to the MemberQuery class

These Buffer, EdgeBuffer, and EdgeLayerBuffer objects are fully realized in the buffer.  That is, there is one Buffer object for the buffer, an EdgeBuffer object for each Edge, and an EdgeLayerBuffer object for each MemberQuery.

There are two classes that represent cells in the buffer:

The EdgeLayerCell class represents an occurrence of a dimension member in an edge layer

The Cell class represents an individual data cell, either in an edge for a property for an EdgeLayerCell, or in the body for a measure.

The EdgeLayerCell and Cell classes are virtual. That is, although the EdgeLayerBuffer objects logically contain a collection of EdgeLayerCell objects, the collection is not realized.  Similarly, although the Buffer object logically contains a collection of Cell objects, the collection is not realized.  Instead, methods and attributes on the Buffer, EdgeBuffer, and EdgeLayerBuffer objects allow an application to realize a selected subset of the objects.  This allows the implementation to conceal the physical representation of the data, and efficiently represent missing data.  Data could be missing for several reasons:

A specified ValueType does not apply to one of the measures in the cube

The data is missing on the server

� REF _Ref404140807 \* MERGEFORMAT �Figure 7-1� shows the Buffer class and the associated classes that together constitute data retrieved from a query.  Also shown are the associations that allow navigation back from the buffer to the metadata to facilitate query refinement.



�

Figure � STYLEREF 1 \n �7�-� SEQ Figure \* ARABIC \r 1 �1� - Buffer and associated classes

Buffer retrieval

An OLAP query specifies two different kinds of data:

Edge data lies along the edges of the cube.  It consists of data from dimension properties, and typically provides row labels, column headers, and page selections.

Content data lies in the body of the cube.  It consists of data taken from measures, and typically provides the bulk of a report or query.

After defining a query, an application retrieves data by creating a buffer.  Method Cube::newCursor() creates a cursor, given a pair of vertices in the logical space defined by the query that bound the buffer.  Each MemberQuery object specifies a collection of properties that are retrieved in the buffer.  The Cube itself specifies a collection of ValueDescriptors that define the value types retrieved for the data portion of the buffer.  Each MemberQuery also has a set of ValueDescriptors that define the value types retrieved for the properties.

Buffer navigation

The MDAPI supports two different buffer navigation techniques:

An application can manage a current position on each edge, using methods EdgeBuffer::next(), EdgeBuffer::previous(), and EdgeBuffer::setIndex().  The MDAPI maintains a ‘current cell’ for each EdgeLayerBuffer that represents the member cell for each dimension at the current edge position.  It also maintains a current cell for the Buffer itself that represents the content cell at the intersection of the edge positions.  An application can find the DataType of each valueType in a cell, and it can extract a native data value.

An application that has its own knowledge about the type of data contained in different parts of the cursor can extract data into native arrays of the appropriate type provided by the caller.

The example that follows shows how an application might navigate a Buffer to generate a page of a report.  The example assumes that Cube object query1 has already defined with three edges.  To keep this example a manageable size, there are a number of assumptions:

The column edge is fastest-varying; it has two nested dimensions.  The query requested property ‘Caption’ for both of these dimensions.  The report page has room for 8 columns.

The row edge is next fastest-varying; it has a single dimension.  Because the report wants to indent child values in the hierarchy on the row edge, the query requested property ‘Level’ to reflect the numeric position of the level for each member as well as property ‘Caption’.  The report page has room for 50 rows.

The page edge is slowest-varying.  All of the remaining dimensions of the schema are nested on the page edge.  The example retrieves only one page, so it really has a two-dimensional Buffer.

The example also relies on the application to provide some helpful machinery.  Class ‘ReportPage’ represents a page of a report using a standard report layout.  The class knows about the parts of the page that are assigned to row labels and column headers, and about the current position in the page. It provides attributes and methods:

attribute int numColumns is the number of columns in the report.  The application can set this.

method columnHeaderPrint(String header, int index, int nColumns) prints column header header.  It centers the header in a region beginning with column index, with width nColumns.

method RowLabelPrint(String label, int indent) prints row label label.  It indents the label indent positions from the left margin.

method cellPrintDouble(double value, boolean exceptional, int index) prints the double-precision floating-point number value in report column index.  If exceptional is true, cellPrintDouble bolds the number to highlight it.

method nextLine() advances the report to the next line.

� REF _Ref404240393 \* MERGEFORMAT �Figure 7-2� shows how the column headers could be printed.

// These objects are already known

Connection schema;

Cube query;

ReportPage page;

Property propertyCaption;

Property propertyLevel;

ValueDescriptor descValue;

ValueDescriptor descExceptional;



// Get the Buffer

long start[] = {0, 0, 0};

long end = {8, 50, 0};

Buffer buffer1 = query::newBuffer(start, end);



// Get the edges

EdgeBufferCollection edges = buffer1.getEdgeBuffers();

EdgeBuffer rowBuffer = edges.edgeBufferAt(0);

EdgeBuffer colBuffer = edges.edgeBufferAt(1);



// Declare variables used here and in the example that follows

EdgeLayerBufferCollection layers;

EdgeLayerBuffer layer;

EdgeLayerCellCollection edgeCells;

EdgeLayerCell edgeCell;

Cell captionCell;

OLAPAny captionValue;



// Get the number of columns, and initialize the page

page.numColumns = rowBuffer.extent;



// Print the column headers.  First, get the layers in the row edge.

layers = rowBuffer.getEdgeLayerBuffers();



// For each layer, get all of the edge cells.  There is one per occurrence

// of each dimension member

for (int i = 0 ; i < layers.size() ; i++)

  {

  layer = layers.layerAt(i);

  edgeCells = layer.getEdgeCells(0, layer.extent);



// For each cell, print the value of the caption property

  for (int j = 0 ; j < edgeCells.size() ; j++)

    {

    edgeCell = edgeCells.cellAt(j);

    captionCell = edgeCell.getCell(propertyCaption);

    captionValue = captionCell.getValue(descValue);

    page.columnHeaderPrint(captionValue.stringValue(), edgeCell.offset,

      edgeCell.span);

    }

  page.nextLine();

  }

Figure � STYLEREF 1 \n �7�-� SEQ Figure \* ARABIC �2� - Buffer navigation example, column headers

Continuing the example, � REF _Ref404254982 \* MERGEFORMAT �Figure 7-3� shows how the body of the report could be printed.

// Print the row labels and the report body.  We know there is only one layer

layers =rowBuffer.getEdgeLayerBuffers();

layer = layers.layerAt(0);



// Use the cell position method to navigate the body of the buffer.  Set up a

// try block to handle the outer traversal of the cells of the rows edge

try

  {



// Traverse the rows in a while loop.  The ‘next’ method will raise an

// exception after the last of the rows.

  while (1)

    {



// Print the row labels

    edgeCell = layer.getCurrentCell();

    captionCell = edgeCell.getCell(propertyCaption);

    captionValue = captionCell.Value(propertyValue);

    Cell levelCell = edgeCell.getCell(descLevel);

    OLAPAny levelValue = levelCell.getValue(descValue);

    RowLabelPrint(captionValue.getString(), levelValue.getLong());



// Set up another try block to handle the inner traversal of the cells of the

// columns edge

    try

     {

      int col = 0;



// Traverse the row in a while loop.  The ‘next’ method will raise an

// exception at the end of the row

      while (1)

        {

        Cell dataCell = buffer.getCurrentCell();



// Get the cell value and the boolean ‘exception’ flag

        OLAPAny cellValue = dataCell.getValue(descValue);

        OLAPAny exceptionalValue = dataCell.getValue(descExceptional);



// Print the value

        page.cellPrint(cellValue.doubleValue(),

          exceptionalValue.booleanValue());



// Advance the current position

        colEdge.next();

        col++;

        }

      }

    catch (OLAPException e2)

      {

      }



// After handling the exception, we are at the end of the columns for a row.

// Reset the columns, and advance the row and the line.

    colEdge.setIndex(0);

    rowEdge.next();

    page.nextLine();

    }

  }

catch (OLAPException e1)

  {

  }

Figure � STYLEREF 1 \n �7�-� SEQ Figure \* ARABIC �3� - Buffer navigation example, report body

Metadata access

�Class Buffer



A Buffer represents a portion of a validated query that has been retrieved.   The Buffer classes provide methods that facilitate navigating the data.��Typically, after creating or modifying a query and validating it, an application will call Cube::newBuffer.  The application indicates its area of immediate interest, and the MDAPI downloads all necessary data.��A Buffer can be created only from a validated cube.  It then remains valid until the cube is again validated.  This allows an application to continue to retrieve data from a buffer while modifying a query.��The Buffer classes can be used in either of two ways:��1) By 'stepping' through the data, calling EdgeBuffer::next() and EdgeBuffer::previous().  These methods manage a set of current cells, one for each dimension and one for the data values can then be extracted from the current cell by calling Cell::getValue and specifying a ValueDescriptor.��2) By explicitly extracting specified ranges of cells from the buffer.  An application can  extract a set of cells, and then extract values from them by calling Cell::getValue.  Or, an application can call methods to directly get native values from the buffer.�



Attributes

long extent�long valuesCount



Attribute Buffer::extent (Read Only)

long extent



The number of data cells in the buffer.  This is the product of the extents of all of the edge buffers.



Attribute Buffer::valuesCount (Read Only)

long valuesCount



The number of values available in each  data cell of the buffer.



Associations

EdgeBufferCollection edgeBuffers�Cube cube�Cell currentCell



Association Buffer::edgeBuffers

EdgeBufferCollection edgeBuffers



An ordered collection of EdgeBuffers, one for each edge of the query.  The order mirrors the order of the collection of CubeEdges for the Cube.



Association Buffer::cube

Cube cube



The Cube from which the buffer was created.



Association Buffer::currentCell

Cell currentCell



The current data cell for the buffer.  After creating a Buffer, the currentCell is set to the cell at the origin of the buffer.  It is changed by calling EdgeBuffer::next, EdgeBuffer::previous, or EdgeBuffer::setIndex().



Methods

CellCollection getCells(long[] start, long[] end)�getCellsFloat(long[] start, long[] end, ValueDescriptor valueType, float[] values)�getCellsDouble(long[] start, long[] end, ValueDescriptor valueType, double[] values)�getCellsText(long[] start, long[] end, ValueDescriptor valueType, string[] values)�getCellsLong(long[] start, long[] end, ValueDescriptor valueType, long[] values)�getCellsDate(long[] start, long[] end, ValueDescriptor valueType, Date[] values)�getCellsBool(long[] start, long[] end, ValueDescriptor valueType, boolean[] values)



Method Buffer::getCells

CellCollection getCells(long[] start, long[] end)



Extracts a collection of data cells from a Buffer.��The collection is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and the order of the cells in the collection.��Possible error codes include:�BUFFER_INVALID - the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract



Returns

CellCollection



Possible Exceptions

OLAPException





Method Buffer::getCellsFloat

getCellsFloat(long[] start, long[] end, ValueDescriptor valueType, float[] values)



Fills an array of single-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

float[]	values	The array of single-precision floating-point numbers to fill.



Returns





Possible Exceptions

OLAPException





Method Buffer::getCellsDouble

getCellsDouble(long[] start, long[] end, ValueDescriptor valueType, double[] values)



Fills an array of double-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'double'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

long[]	end	An array of consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

double[]	values	The array of double-precision floating-point numbers to fill.



Returns





Possible Exceptions

OLAPException





Method Buffer::getCellsText

getCellsText(long[] start, long[] end, ValueDescriptor valueType, string[] values)



Fills an array of strings representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'text'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

string[]	values	The array of strings to fill.



Returns





Possible Exceptions

OLAPException





Method Buffer::getCellsLong

getCellsLong(long[] start, long[] end, ValueDescriptor valueType, long[] values)



Fills an array of longs representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'long'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

long[]	values	The array of longs to fill.



Returns





Possible Exceptions

OLAPException





Method Buffer::getCellsDate

getCellsDate(long[] start, long[] end, ValueDescriptor valueType, Date[] values)



Fills an array of Dates representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'date'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long[]	start	An array consisting of a zero-based index index into each of the edges that marks the starting vertex of the cells to extract.

long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

Date[]	values	The array of dates to fill.



Returns





Possible Exceptions

OLAPException





Method Buffer::getCellsBool

getCellsBool(long[] start, long[] end, ValueDescriptor valueType, boolean[] values)



Fills an array of booleans representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'boolean'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

boolean[]	values	The array of booleans to fill.



Returns





Possible Exceptions

OLAPException



�Class EdgeBuffer



An EdgeBuffer represents a buffer for one edge of a Buffer.  There is an EdgeBuffer for each CubeEdge in the query.�



Attributes

long extent



Attribute EdgeBuffer::extent (Read Only)

long extent



The number of cells along the buffer.  This is the same as the extent of the fastest-varying edge layer buffer.



Associations

EdgeLayerBufferCollection edgeLayerBuffers�CubeEdge cubeEdge



Association EdgeBuffer::edgeLayerBuffers

EdgeLayerBufferCollection edgeLayerBuffers



An ordered collection of EdgeLayerBuffers, one for each dimension in the edge.  The order mirrors the order of the collection of MemberQueries for the  corresponding CubeEdge.



Association EdgeBuffer::cubeEdge

CubeEdge cubeEdge



The cube edge that corresponds to the cube edge buffer



Methods

next()�previous()�setIndex(long index)�scroll(long cells)



Method EdgeBuffer::next

next()



Advances the current position along the edge by one cell.  This resets the currentCell attribute in the Buffer to a new data cell.  It also resets the currentCell attribute in each of the EdgeLayerBuffers to a new edge cell.��If the current cell in the fastest-varying edge layer buffer is the last one, advancing the position 'wraps' by resetting the position to the first cell and advancing the current cell in the next slower-varying edge layer buffer.  Similarly, if the current cell in that edge layer buffer is the last one, it, too, is set to the first cell and the next slower-varying EdgeLayerBuffer is advanced.  Note that if the query is asymmetric because of NA or zero-suppression, the set of cells represented by an edge layer buffer may vary across the cells of the slower-varying edge layer buffer. ��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.��BUFFER_AT_END		all layers are already at their last positions.�

Returns





Possible Exceptions

OLAPException





Method EdgeBuffer::previous

previous()



Backs up the current position along the edge by one cell.  This resets the currentCell attribute in the Buffer to a new data cell.  It also resets the currentCell attribute in each of the EdgeLayerBuffers to a new edge cell.��If the current cell in the fastest-varying edge layer buffer is the first one, backing up the position 'wraps' by resetting the position to the last cell and backing up the current cell in the next slower-varying edge layer buffer.  Similarly, if the current cell in that edge layer buffer is the first one, it, too, is set to the last cell and the next slower-varying EdgeLayerBuffer is backed up.  Note that if the query is asymmetric because of NA or zero-suppression, the set of cells represented by an edge layer buffer may vary across the cells of the slower-varying edge layer buffer. ��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.��BUFFER_AT_END		all layers are already at their first positions.�

Returns





Possible Exceptions

OLAPException





Method EdgeBuffer::setIndex

setIndex(long index)



Sets the current zero-based cell index for the edge.  The current cell indices for the other edges are unaffected. This affects the current data cell for the buffer and the current edge cell for each of the layers on the edge.  This method will be used primarily to get to the dimension members for an index in the edge.��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long	index	The cell index in the edge



Returns





Possible Exceptions

OLAPException





Method EdgeBuffer::scroll

scroll(long cells)



Scrolls the buffer along the edge by the specified number of cells.  This is a convenience function that is equivalent to destroying the current buffer and creating a new one with an offset range.��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.�

Parameters

Type		Name		Description   		

long	cells	the number of cells by which to scroll the buffer



Returns





Possible Exceptions

OLAPException



�Class EdgeLayerBuffer



An EdgeLayerBuffer represents a buffer for one dimension in a buffer edge.



Attributes

long extent�long propertiesCount�long valuesCount



Attribute EdgeLayerBuffer::extent (Read Only)

long extent



The number of cells in the edge layer.



Attribute EdgeLayerBuffer::propertiesCount (Read Only)

long propertiesCount



The number of properties available for the edge cells of the edge layer buffer



Attribute EdgeLayerBuffer::valuesCount (Read Only)

long valuesCount



The number of values available for the edge cells of the edge layer buffer



Associations

MemberQuery memberQuery�EdgeLayerCell currentCell



Association EdgeLayerBuffer::memberQuery

MemberQuery memberQuery



The member query that corresponds to the cube edge layer buffer



Association EdgeLayerBuffer::currentCell

EdgeLayerCell currentCell



The current edge cell for the edge layer buffer.  After creating a Buffer, the currentCell is set to the first edge cell in the layer.  It is changed by calling EdgeBuffer::next and EdgeBuffer::previous.



Methods

EdgeLayerCellCollection getEdgeLayerCells(long start, long end)�getCellsFloat(long start, long end, ValueDescriptor valueType, float[] values)�getCellsDouble(long start, long end, ValueDescriptor valueType, double[] values)�getCellsText(long start, long end, ValueDescriptor valueType, string[] values)�getCellsLong(long start, long end, ValueDescriptor valueType, long[] values)�getCellsDate(long start, long end, ValueDescriptor valueType, Date[] values)�getCellsBool(long start, long end, ValueDescriptor valueType, boolean[] values)



Method EdgeLayerBuffer::getEdgeLayerCells

EdgeLayerCellCollection getEdgeLayerCells(long start, long end)



Extracts a collection of EdgeLayerCells for the layer from the Buffer.  The arguments are start and end indices into the cells that are logically contained by the edge layer buffer.��The collection is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and the order of the cells in the collection.��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long	start	The index into the edge that marks the starting element of the cells to extract.

long	end	The index into the cells for the edge layer that marks the end of the cells to extract.



Returns

EdgeLayerCellCollection



Possible Exceptions

OLAPException





Method EdgeLayerBuffer::getCellsFloat

getCellsFloat(long start, long end, ValueDescriptor valueType, float[] values)



Fills an array of single-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long	start	The index into the edge that marks the starting element of the cells to extract.

long	end	The index into the cells for the edge layer that marks the end of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

float[]	values	The array of single-precision floating-point numbers to fill.



Returns





Possible Exceptions

OLAPException





Method EdgeLayerBuffer::getCellsDouble

getCellsDouble(long start, long end, ValueDescriptor valueType, double[] values)



Fills an array of double-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long	start	an index into the cells for the edge layer that marks the start of the cells to extract

long	end	The index into the cells for the edge layer that marks the end of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

double[]	values	The array of double-precision floating-point numbers to fill.



Returns





Possible Exceptions

OLAPException





Method EdgeLayerBuffer::getCellsText

getCellsText(long start, long end, ValueDescriptor valueType, string[] values)



Fills an array of strings representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long	start	The index into the edge that marks the starting element of the cells to extract.

long	end	The index into the cells for the edge layer that marks the end of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

string[]	values	The array of strings to fill.



Returns





Possible Exceptions

OLAPException





Method EdgeLayerBuffer::getCellsLong

getCellsLong(long start, long end, ValueDescriptor valueType, long[] values)



Fills an array of strings representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long	start	The index into the edge that marks the starting element of the cells to extract.

long	end	The index into the cells for the edge layer that marks the end of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

long[]	values	The array of longs to fill.



Returns





Possible Exceptions

OLAPException





Method EdgeLayerBuffer::getCellsDate

getCellsDate(long start, long end, ValueDescriptor valueType, Date[] values)



Fills an array of Dates representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long	start	The index into the edge that marks the starting element of the cells to extract.

long	end	The index into the cells for the edge layer that marks the end of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

Date[]	values	The array of dates to fill.



Returns





Possible Exceptions

OLAPException





Method EdgeLayerBuffer::getCellsBool

getCellsBool(long start, long end, ValueDescriptor valueType, boolean[] values)



Fills an array of booleans representing the values of the specified range of cells for the value type represented by the specified value descriptor.  The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube.  It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'boolean'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Type		Name		Description   		

long	start	The index into the edge that marks the starting element of the cells to extract.

long	end	The index into the cells for the edge layer that marks the end of the cells to extract.

ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.

boolean[]	values	The array of booleans to fill.



Returns





Possible Exceptions

OLAPException



�Class Cell



A Cell represents the contents of a single cell of data.  Logically, there is a Cell for each data cell in the buffer.  The MDAPI does not represent the collection of Cells for a Buffer, but instead relies on methods on Buffer to obtain Cells.  This allows implementations to efficiently represent these collections, which may be sparse.��A cell may contain values for more than one value type.  For instance, a cell may contain both a numeric value for a measure, used for calculations, and a formatted string, used  for display,  This is represented by an association with a number of OLAPAny objects, qualified by the ValueDescriptor for the corresponding ValueType.



Attributes





Associations

OLAPAny value(ValueDescriptor valueType)



Association Cell::value

OLAPAny value(ValueDescriptor valueType)



The value of the cell for the specified value descriptor.



Parameters

Type		Name		Description   		

ValueDescriptor 	valueType	



Methods



�Class EdgeLayerCell



An EdgeLayerCell represents a cell in an edge of a buffer.  Logically, there is an EdgeLayerCell for each occurrence of each dimension member in the edge.  The MDAPI does not represent the collection of EdgeLayerCells for an EdgeLayerBuffer, but instead relies on methods on EdgeLayerBuffer to obtain EdgeLayerCells.  This allows implementations to efficiently represent these collections, which may be sparse.��A cell may contain values for more than one property.  For instance, a cell may contain both a member name, used for saved reports, and a member caption, used  for display,  This is represented by an association with a number of OLAPAny objects, qualified by the Property.



Attributes

long span�long offset



Attribute EdgeLayerCell::span (Read Only)

long span



The number of cells in the fastest-varying layer above which the edge cell is nested



Attribute EdgeLayerCell::offset (Read Only)

long offset



The offset into the cells in the fastest-varying layer above which the edge cell begins



Associations

Member member�Cell cell(Property property)



Association EdgeLayerCell::member

Member member



The dimension member that corresponds to the edge cell.



Association EdgeLayerCell::cell

Cell cell(Property property)



The cell that contains the values for the specified property



Parameters

Type		Name		Description   		

Property 	property	



Methods





�Asynchronous Support

Although OLAP servers are designed to provide fast responses even to complex queries, it is possible to construct queries that take a long time to complete.  It might even be the case that an application would want to cancel the evaluation of such a query.  The MDAPI provides a class and a group of methods that allow an application to do something else while waiting for a query evaluation to complete, and to cancel the query if desired.

The MDAPI provides two implementations of each method that might take a long time to complete.  One version just blocks while the method runs.  The second has the word ‘Async’ appended to its name, and it returns an instance of ProgressMonitor immediately after it is called.  The application may then:

periodically poll the ProgressMonitor to see if the operation has completed by calling method getStatus(), possibly attending to other work in the interim

attempt to cancel the operation by calling the method cancel()

wait for the operation to complete by calling the method wait().

A multi-threaded interactive application might:

call Cube::validateAsync() and receive an instance if ProgressMonitor

start another thread, which displays a dialog with a ‘cancel’ button

call the wait() method, blocking the original thread

Two things could occur:

the operation could complete, allowing the original thread to continue

the user could press the cancel() button.  The second thread would call the cancel() method

The wait() in the original thread would end, either because the operation completed or because it was canceled.  The original thread would notify the other thread, which would take down its dialog.

� REF _Ref404140923 \* MERGEFORMAT �Figure 8-1� shows the ProgressMonitor and associated classes.



�

Figure � STYLEREF 1 \n �8�-� SEQ Figure \* ARABIC \r 1 �1� - ProgressMonitor and associated classes

�Class ProgressMonitor



Instances of ProgressMonitor are returned from potentially long-running operations, such as Cube::validateAsync().  The calling thread may do one of three things: �(1) poll the ProgressMonitor for completion using the getStatus() method;�(2) attempt to cancel the operation using cancel();�(3) become blocked until the operation is completed by calling the wait() method.��A typical UI scenario is:�(a) invoke the validateAsync operation and receive an instance of ProgressMonitor;�(b) open a dialog containing a cancel button; �(c) call the wait() method, which blocks the thread.��Two things can then occur:�(d1) the validate operation completes and the blocked thread is released.�(d2) a separate UI thread allows the user to push the cancel button.  This invokes the cancel() operation, which attempts to cancel the query, sets the status to cancel, and releases the blocked thread by raising an exception.��(e) The newly released thread then closes the dialog.



Attributes





Associations

MessageCollection messages



Association ProgressMonitor::messages

MessageCollection messages



The Messages generated by the error.  The collection is empty unless the status is OPRTATION_ERROR.



Methods

cancel()�wait()�ProgressStatus getStatus()



Method ProgressMonitor::cancel

cancel()



Attempt to cancel the ongoing operation, set the status to CANCELED, and release any threads blocked by the wait() method on the ProgressMonitor instance by raising an exception.��Possible error codes include:�OPERATION_CANCELED		The asynchronous operation has already been canceled.�OPERATION_COMPLETED		The asynchronous operation has already competed.�

Returns





Possible Exceptions

OLAPException





Method ProgressMonitor::wait

wait()



Block the calling thread until the operation is complete or canceled.  In the latter case, an exception is raised.  If any error occurs during execution of the long operation (such as a network error), an exception is raised and the thread released.��Possible error codes include:�OPERATION_CANCELED		The asynchronous operation has already been canceled.�ASYNCHRONOUS_ERROR	An error occurred during the execution of the asynchronous operation.  Specific error information can be obtaining from the getMessages() method.�

Returns





Possible Exceptions

OLAPException





Method ProgressMonitor::getStatus

ProgressStatus getStatus()



Return OPERATION_COMPLETED if the long-running operation is complete, OPERATION_IN_PROGRESS if it is in progress, or OPERATION_CANCELED if it has been canceled. Returns OPERATION_ERROR if an error occurred. The associated message collection then contains information about the error.��Returns control immediately.�

Returns

ProgressStatus



Possible Exceptions

OLAPException



�Miscellaneous

The MDAPI miscellaneous classed support two different areas:

exception and message handling

internationalization

Exception handling

In the MDAPI object model, methods raise exceptions to indicate that an error has occurred.  No methods have explicit return codes.  The Exception object represents an MDAPI exception. Whether the API is actually implemented this way depends on the language.  Exceptions are an inherent part of Java, Exception is a Java exception class, and Java MDAPI methods raise exceptions to signal errors.  COM does not support exceptions, and COM MDAPI methods return an HRESULT to indicate that general success of failure, and create a thread-specific error object to represent greater detail about the error.  Much more detail about Java and COM error handing can be found in the MDAPI Java Reference Guide and the MDAPI COM Reference Guide respectively.

Software systems, and especially distributed software systems, often produce a cascade of errors.  For example, a client-side method could fail because a server-side class could not be created.  The class could not be because the server operating system was unable to allocate new storage, which was because of a disk error trying to write a virtual memory page.  The application is primarily concerned about whether the function succeeded or failed, but the addition information produce at each layer is also valuable.  The MDAPI preserves this information in a collection of Message objects associated with each exception.

� REF _Ref404141096 \* MERGEFORMAT �Figure 9-1� shows the Exception and Message classes that together constitute the error reporting mechanism for the MDAPI.



�

Figure � STYLEREF 1 \n �9�-� SEQ Figure \* ARABIC \r 1 �1� - Exception and associated classes

Internationalization

Textual messages such as those in the Message class must be in a particular human language.   When a user installs an implementation of the MDAPI, she chooses a human language for any messages.   This choice affects the generic Session class and the implementation-specific Driver and Schema classes.  The user selects a language when she installs any subsequent implementations.  Since different implementations may support different languages, this language may differ from the one chosen for the initial installation.

Servers can also produce messages.  And different schemata may have message files in different languages.  So an application may find that messages from the server, messages from the driver, and message from the Session class are all in different languages.

The Language class represents a human language.  The Session, Driver, and Connection classes are all associated with a collection of available Languages.  Each object also has a current Language that the application can set.

�Class OLAPException



A collection of Message objects returned from an MDAPI object method.



Attributes

long maximumSeverity



Attribute OLAPException::maximumSeverity (Read Only)

long maximumSeverity



The highest severity rating of all the messages contained in the exception.



Associations

MessageCollection messages



Association OLAPException::messages

MessageCollection messages



The Messages generated by the exception.



Methods



�Class Language



Represents a language used to render error messages.



Attributes

string name



Attribute Language::name (Read Only)

string name



The name of the language.  Format to be decided.



Methods



�Class Message



Status message event send from the implementation or server side of the API.�



Attributes

string message�ErrorCode errorCode�long nativeCode�SeverityCode severity



Attribute Message::message (Read Only)

string message



A textual message that describes the status event.�



Attribute Message::errorCode (Read Only)

ErrorCode errorCode



The MDAPI-related error code.�



Attribute Message::nativeCode (Read Only)

long nativeCode



A native status code (code meaningful to implementation of API, to server, or to operating system).



Attribute Message::severity (Read Only)

SeverityCode severity



An indication of the severity of the error.



Methods



�Open Issues

This chapter discusses open issues in the MDAPI.  These will all be considered by further revisions to the specification.

Internationalization

For the language support in the MDAPI to be very useful to applications, the MDAPI will have to codify representation of the different languages across the Session class and the implementation classes.

The MDAPI does not yet consider character sets and locale issues.

Expressions

This version of the  MDAPI introduces the ValueExpression as a means of expressing comparison queries.  This class can be easily used for several additional purposes.  By providing unary and binary arithmetic operators, the class could be used to express complex filter expressions. The class could also be used to allow an application to define a measure-like expression to be retrieved in a query.

Properties and Value Types

A standard set of properties with known meanings should be defined.  Similarly, a standard set of ValueDescriptors with known meanings should be defined.  These could be optional, but would enable applications that find a particular property or value descriptor to know what it means.

� COMMENTS  \* MERGEFORMAT �



	� COMMENTS  \* MERGEFORMAT �



� COMMENTS  \* MERGEFORMAT �



� TITLE  \* MERGEFORMAT �MDAPI Programmers Guide�



	Table of Contents



�PAGE  �170�

� COMMENTS  \* MERGEFORMAT �



�PAGE  �xv�

	� COMMENTS  \* MERGEFORMAT �



� TITLE  \* MERGEFORMAT �MDAPI Programmers Guide�



		Preface



� TITLE  \* MERGEFORMAT �MDAPI Programmers Guide�



		� STYLEREF "Heading 1" \* MERGEFORMAT �Open Issues�



�PAGE  �10�

	� COMMENTS  \* MERGEFORMAT �








