MDAPITM the OLAP Application�Program Interface�Version 2.0

COM Reference

January 1998

�

MDAPI TM The OLAP Application Program Interface Version 2.0 Specification

The OLAP Council

3271 NW Blackcomb Drive

Portland, OR 97229

© Copyright OLAP Council, January 1998

Permission is granted to anyone to use, alter, and redistribute this specification freely, subject to the following restrictions:

The OLAP Council is not responsible for any consequences arising from the use of this specification or any altered version of it.

The origin of this specification must not be misrepresented, either by claim or by omission. Acknowledgment to the OLAP Council must appear in any altered version of this specification.

Any altered version of this specification must be designated as such and must not be misrepresented as being published or endorsed by the OLAP Council.

This notice may not be removed or altered.

�TABLE OF CONTENTS

� TOC \o "1-3" �1 Introduction	� GOTOBUTTON _Toc410086596 � PAGEREF _Toc410086596 �1��

2 Environmental considerations	� GOTOBUTTON _Toc410086597 � PAGEREF _Toc410086597 �3��

Parameter passing	� GOTOBUTTON _Toc410086598 � PAGEREF _Toc410086598 �3��

Common Data Type Conversions	� GOTOBUTTON _Toc410086599 � PAGEREF _Toc410086599 �4��

Error handling	� GOTOBUTTON _Toc410086600 � PAGEREF _Toc410086600 �4��

Multi-vendor support	� GOTOBUTTON _Toc410086601 � PAGEREF _Toc410086601 �4��

Session	� GOTOBUTTON _Toc410086602 � PAGEREF _Toc410086602 �5��

Collections	� GOTOBUTTON _Toc410086603 � PAGEREF _Toc410086603 �5��

Enumerations	� GOTOBUTTON _Toc410086604 � PAGEREF _Toc410086604 �6��

Any	� GOTOBUTTON _Toc410086605 � PAGEREF _Toc410086605 �6��

Attributes	� GOTOBUTTON _Toc410086606 � PAGEREF _Toc410086606 �6��

Accessing Base Classes	� GOTOBUTTON _Toc410086607 � PAGEREF _Toc410086607 �6��

3 Enumerations	� GOTOBUTTON _Toc410086608 � PAGEREF _Toc410086608 �9��

OLAPQuery	� GOTOBUTTON _Toc410086609 � PAGEREF _Toc410086609 �10��

Enumeration OLAPSortOrder	� GOTOBUTTON _Toc410086610 � PAGEREF _Toc410086610 �10��

Enumeration OLAPQueryStatus	� GOTOBUTTON _Toc410086611 � PAGEREF _Toc410086611 �10��

Enumeration OLAPInitialSelection	� GOTOBUTTON _Toc410086612 � PAGEREF _Toc410086612 �10��

OLAPAsynchronousSupport	� GOTOBUTTON _Toc410086613 � PAGEREF _Toc410086613 �12��

Enumeration OLAPProgressStatus	� GOTOBUTTON _Toc410086614 � PAGEREF _Toc410086614 �12��

OLAPCommon	� GOTOBUTTON _Toc410086615 � PAGEREF _Toc410086615 �13��

Enumeration OLAPErrorCode	� GOTOBUTTON _Toc410086616 � PAGEREF _Toc410086616 �13��

Enumeration OLAPSeverityCode	� GOTOBUTTON _Toc410086617 � PAGEREF _Toc410086617 �14��

OLAPMetaData	� GOTOBUTTON _Toc410086618 � PAGEREF _Toc410086618 �15��

Enumeration OLAPHierarchyDirection	� GOTOBUTTON _Toc410086619 � PAGEREF _Toc410086619 �15��

Enumeration OLAPDimensionType	� GOTOBUTTON _Toc410086620 � PAGEREF _Toc410086620 �15��

Enumeration OLAPMemberRelation	� GOTOBUTTON _Toc410086621 � PAGEREF _Toc410086621 �15��

Enumeration OLAPDataType	� GOTOBUTTON _Toc410086622 � PAGEREF _Toc410086622 �16��

4 Classes	� GOTOBUTTON _Toc410086623 � PAGEREF _Toc410086623 �17��

Class OLAPBuffer	� GOTOBUTTON _Toc410086624 � PAGEREF _Toc410086624 �18��

Property OLAPBuffer::extent (Read Only)	� GOTOBUTTON _Toc410086625 � PAGEREF _Toc410086625 �18��

Property OLAPBuffer::valuesCount (Read Only)	� GOTOBUTTON _Toc410086626 � PAGEREF _Toc410086626 �18��

Property OLAPBuffer::edgeBuffers (Read Only)	� GOTOBUTTON _Toc410086627 � PAGEREF _Toc410086627 �19��

Property OLAPBuffer::cube (Read Only)	� GOTOBUTTON _Toc410086628 � PAGEREF _Toc410086628 �19��

Property OLAPBuffer::currentCell (Read Only)	� GOTOBUTTON _Toc410086629 � PAGEREF _Toc410086629 �19��

Method OLAPBuffer::getCells	� GOTOBUTTON _Toc410086630 � PAGEREF _Toc410086630 �19��

Method OLAPBuffer::getCellsFloat	� GOTOBUTTON _Toc410086631 � PAGEREF _Toc410086631 �20��

Method OLAPBuffer::getCellsDouble	� GOTOBUTTON _Toc410086632 � PAGEREF _Toc410086632 �21��

Method OLAPBuffer::getCellsText	� GOTOBUTTON _Toc410086633 � PAGEREF _Toc410086633 �22��

Method OLAPBuffer::getCellsLong	� GOTOBUTTON _Toc410086634 � PAGEREF _Toc410086634 �23��

Method OLAPBuffer::getCellsDate	� GOTOBUTTON _Toc410086635 � PAGEREF _Toc410086635 �24��

Method OLAPBuffer::getCellsBool	� GOTOBUTTON _Toc410086636 � PAGEREF _Toc410086636 �25��

Class OLAPCell	� GOTOBUTTON _Toc410086637 � PAGEREF _Toc410086637 �27��

Property OLAPCell::value (Read Only)	� GOTOBUTTON _Toc410086638 � PAGEREF _Toc410086638 �27��

Class OLAPConnection	� GOTOBUTTON _Toc410086639 � PAGEREF _Toc410086639 �28��

Property OLAPConnection::maxEdges (Read Only)	� GOTOBUTTON _Toc410086640 � PAGEREF _Toc410086640 �28��

Property OLAPConnection::minEdges (Read Only)	� GOTOBUTTON _Toc410086641 � PAGEREF _Toc410086641 �29��

Property OLAPConnection::language (Read/Write)	� GOTOBUTTON _Toc410086642 � PAGEREF _Toc410086642 �29��

Property OLAPConnection::supportedLanguages (Read Only)	� GOTOBUTTON _Toc410086643 � PAGEREF _Toc410086643 �29��

Property OLAPConnection::session (Read Only)	� GOTOBUTTON _Toc410086644 � PAGEREF _Toc410086644 �29��

Property OLAPConnection::measureDimension (Read Only)	� GOTOBUTTON _Toc410086645 � PAGEREF _Toc410086645 �29��

Property OLAPConnection::dimensions (Read Only)	� GOTOBUTTON _Toc410086646 � PAGEREF _Toc410086646 �30��

Property OLAPConnection::descriptors (Read Only)	� GOTOBUTTON _Toc410086647 � PAGEREF _Toc410086647 �30��

Property OLAPConnection::defaultDescriptor (Read Only)	� GOTOBUTTON _Toc410086648 � PAGEREF _Toc410086648 �30��

Property OLAPConnection::defaultProperty (Read Only)	� GOTOBUTTON _Toc410086649 � PAGEREF _Toc410086649 �30��

Method OLAPConnection::newCube	� GOTOBUTTON _Toc410086650 � PAGEREF _Toc410086650 �30��

Method OLAPConnection::closeConnection	� GOTOBUTTON _Toc410086651 � PAGEREF _Toc410086651 �31��

Class OLAPCube	� GOTOBUTTON _Toc410086652 � PAGEREF _Toc410086652 �33��

Property OLAPCube::name (Read/Write)	� GOTOBUTTON _Toc410086653 � PAGEREF _Toc410086653 �33��

Property OLAPCube::edges (Read Only)	� GOTOBUTTON _Toc410086654 � PAGEREF _Toc410086654 �33��

Property OLAPCube::descriptors (Read Only)	� GOTOBUTTON _Toc410086655 � PAGEREF _Toc410086655 �33��

Method OLAPCube::pivot	� GOTOBUTTON _Toc410086656 � PAGEREF _Toc410086656 �34��

Method OLAPCube::rotate	� GOTOBUTTON _Toc410086657 � PAGEREF _Toc410086657 �35��

Method OLAPCube::setContext	� GOTOBUTTON _Toc410086658 � PAGEREF _Toc410086658 �35��

Method OLAPCube::setOrientation	� GOTOBUTTON _Toc410086659 � PAGEREF _Toc410086659 �36��

Method OLAPCube::validate	� GOTOBUTTON _Toc410086660 � PAGEREF _Toc410086660 �37��

Method OLAPCube::validateAsync	� GOTOBUTTON _Toc410086661 � PAGEREF _Toc410086661 �38��

Method OLAPCube::getCell	� GOTOBUTTON _Toc410086662 � PAGEREF _Toc410086662 �38��

Method OLAPCube::clone	� GOTOBUTTON _Toc410086663 � PAGEREF _Toc410086663 �39��

Method OLAPCube::newBuffer	� GOTOBUTTON _Toc410086664 � PAGEREF _Toc410086664 �40��

Method OLAPCube::createEdge	� GOTOBUTTON _Toc410086665 � PAGEREF _Toc410086665 �41��

Method OLAPCube::removeEdge	� GOTOBUTTON _Toc410086666 � PAGEREF _Toc410086666 �41��

Method OLAPCube::addDescriptor	� GOTOBUTTON _Toc410086667 � PAGEREF _Toc410086667 �42��

Method OLAPCube::removeDescriptor	� GOTOBUTTON _Toc410086668 � PAGEREF _Toc410086668 �43��

Method OLAPCube::getSubQuery	� GOTOBUTTON _Toc410086669 � PAGEREF _Toc410086669 �43��

Method OLAPCube::getStatus	� GOTOBUTTON _Toc410086670 � PAGEREF _Toc410086670 �44��

Method OLAPCube::getOrientation	� GOTOBUTTON _Toc410086671 � PAGEREF _Toc410086671 �44��

Method OLAPCube::pivotToNestLevel	� GOTOBUTTON _Toc410086672 � PAGEREF _Toc410086672 �44��

Class OLAPCubeEdge	� GOTOBUTTON _Toc410086673 � PAGEREF _Toc410086673 �46��

Property OLAPCubeEdge::suppressMissing (Read/Write)	� GOTOBUTTON _Toc410086674 � PAGEREF _Toc410086674 �46��

Property OLAPCubeEdge::suppressZeros (Read/Write)	� GOTOBUTTON _Toc410086675 � PAGEREF _Toc410086675 �46��

Property OLAPCubeEdge::cube (Read Only)	� GOTOBUTTON _Toc410086676 � PAGEREF _Toc410086676 �47��

Property OLAPCubeEdge::nestedQueries (Read Only)	� GOTOBUTTON _Toc410086677 � PAGEREF _Toc410086677 �47��

Method OLAPCubeEdge::getDimensions	� GOTOBUTTON _Toc410086678 � PAGEREF _Toc410086678 �47��

Method OLAPCubeEdge::resultCount	� GOTOBUTTON _Toc410086679 � PAGEREF _Toc410086679 �48��

Method OLAPCubeEdge::getCellIndex	� GOTOBUTTON _Toc410086680 � PAGEREF _Toc410086680 �48��

Method OLAPCubeEdge::getIndexMembers	� GOTOBUTTON _Toc410086681 � PAGEREF _Toc410086681 �49��

Method OLAPCubeEdge::getNestingOfDimension	� GOTOBUTTON _Toc410086682 � PAGEREF _Toc410086682 �49��

Class OLAPDimension	� GOTOBUTTON _Toc410086683 � PAGEREF _Toc410086683 �51��

Property OLAPDimension::dimensionType (Read Only)	� GOTOBUTTON _Toc410086684 � PAGEREF _Toc410086684 �51��

Property OLAPDimension::hierarchies (Read Only)	� GOTOBUTTON _Toc410086685 � PAGEREF _Toc410086685 �51��

Property OLAPDimension::defaultHierarchy (Read Only)	� GOTOBUTTON _Toc410086686 � PAGEREF _Toc410086686 �51��

Property OLAPDimension::levels (Read Only)	� GOTOBUTTON _Toc410086687 � PAGEREF _Toc410086687 �52��

Class OLAPDriver	� GOTOBUTTON _Toc410086688 � PAGEREF _Toc410086688 �53��

Property OLAPDriver::vendorName (Read Only)	� GOTOBUTTON _Toc410086689 � PAGEREF _Toc410086689 �53��

Property OLAPDriver::driverProduct (Read Only)	� GOTOBUTTON _Toc410086690 � PAGEREF _Toc410086690 �53��

Property OLAPDriver::driverVersion (Read Only)	� GOTOBUTTON _Toc410086691 � PAGEREF _Toc410086691 �53��

Property OLAPDriver::driverName (Read Only)	� GOTOBUTTON _Toc410086692 � PAGEREF _Toc410086692 �53��

Property OLAPDriver::language (Read Only)	� GOTOBUTTON _Toc410086693 � PAGEREF _Toc410086693 �54��

Property OLAPDriver::availableSchemata (Read Only)	� GOTOBUTTON _Toc410086694 � PAGEREF _Toc410086694 �54��

Property OLAPDriver::session (Read Only)	� GOTOBUTTON _Toc410086695 � PAGEREF _Toc410086695 �54��

Method OLAPDriver::openConnection	� GOTOBUTTON _Toc410086696 � PAGEREF _Toc410086696 �54��

Method OLAPDriver::getSchemataByName	� GOTOBUTTON _Toc410086697 � PAGEREF _Toc410086697 �55��

Class OLAPEdgeBuffer	� GOTOBUTTON _Toc410086698 � PAGEREF _Toc410086698 �56��

Property OLAPEdgeBuffer::extent (Read Only)	� GOTOBUTTON _Toc410086699 � PAGEREF _Toc410086699 �56��

Property OLAPEdgeBuffer::edgeLayerBuffers (Read Only)	� GOTOBUTTON _Toc410086700 � PAGEREF _Toc410086700 �56��

Property OLAPEdgeBuffer::cubeEdge (Read Only)	� GOTOBUTTON _Toc410086701 � PAGEREF _Toc410086701 �56��

Method OLAPEdgeBuffer::next	� GOTOBUTTON _Toc410086702 � PAGEREF _Toc410086702 �57��

Method OLAPEdgeBuffer::previous	� GOTOBUTTON _Toc410086703 � PAGEREF _Toc410086703 �57��

Method OLAPEdgeBuffer::setIndex	� GOTOBUTTON _Toc410086704 � PAGEREF _Toc410086704 �58��

Method OLAPEdgeBuffer::scroll	� GOTOBUTTON _Toc410086705 � PAGEREF _Toc410086705 �58��

Class OLAPEdgeLayerBuffer	� GOTOBUTTON _Toc410086706 � PAGEREF _Toc410086706 �60��

Property OLAPEdgeLayerBuffer::extent (Read Only)	� GOTOBUTTON _Toc410086707 � PAGEREF _Toc410086707 �60��

Property OLAPEdgeLayerBuffer::propertiesCount (Read Only)	� GOTOBUTTON _Toc410086708 � PAGEREF _Toc410086708 �60��

Property OLAPEdgeLayerBuffer::valuesCount (Read Only)	� GOTOBUTTON _Toc410086709 � PAGEREF _Toc410086709 �60��

Property OLAPEdgeLayerBuffer::memberQuery (Read Only)	� GOTOBUTTON _Toc410086710 � PAGEREF _Toc410086710 �60��

Property OLAPEdgeLayerBuffer::currentCell (Read Only)	� GOTOBUTTON _Toc410086711 � PAGEREF _Toc410086711 �61��

Method OLAPEdgeLayerBuffer::getEdgeLayerCells	� GOTOBUTTON _Toc410086712 � PAGEREF _Toc410086712 �61��

Method OLAPEdgeLayerBuffer::getCellsFloat	� GOTOBUTTON _Toc410086713 � PAGEREF _Toc410086713 �62��

Method OLAPEdgeLayerBuffer::getCellsDouble	� GOTOBUTTON _Toc410086714 � PAGEREF _Toc410086714 �63��

Method OLAPEdgeLayerBuffer::getCellsText	� GOTOBUTTON _Toc410086715 � PAGEREF _Toc410086715 �64��

Method OLAPEdgeLayerBuffer::getCellsLong	� GOTOBUTTON _Toc410086716 � PAGEREF _Toc410086716 �65��

Method OLAPEdgeLayerBuffer::getCellsDate	� GOTOBUTTON _Toc410086717 � PAGEREF _Toc410086717 �65��

Method OLAPEdgeLayerBuffer::getCellsBool	� GOTOBUTTON _Toc410086718 � PAGEREF _Toc410086718 �66��

Class OLAPEdgeLayerCell	� GOTOBUTTON _Toc410086719 � PAGEREF _Toc410086719 �68��

Property OLAPEdgeLayerCell::span (Read Only)	� GOTOBUTTON _Toc410086720 � PAGEREF _Toc410086720 �68��

Property OLAPEdgeLayerCell::offset (Read Only)	� GOTOBUTTON _Toc410086721 � PAGEREF _Toc410086721 �68��

Property OLAPEdgeLayerCell::member (Read Only)	� GOTOBUTTON _Toc410086722 � PAGEREF _Toc410086722 �68��

Property OLAPEdgeLayerCell::cell (Read Only)	� GOTOBUTTON _Toc410086723 � PAGEREF _Toc410086723 �69��

Class OLAPHierarchy	� GOTOBUTTON _Toc410086724 � PAGEREF _Toc410086724 �70��

Property OLAPHierarchy::levels (Read Only)	� GOTOBUTTON _Toc410086725 � PAGEREF _Toc410086725 �70��

Method OLAPHierarchy::relationQuery	� GOTOBUTTON _Toc410086726 � PAGEREF _Toc410086726 �70��

Class OLAPLanguage	� GOTOBUTTON _Toc410086727 � PAGEREF _Toc410086727 �72��

Property OLAPLanguage::name (Read Only)	� GOTOBUTTON _Toc410086728 � PAGEREF _Toc410086728 �72��

Class OLAPLevel	� GOTOBUTTON _Toc410086729 � PAGEREF _Toc410086729 �73��

Property OLAPLevel::dimension (Read Only)	� GOTOBUTTON _Toc410086730 � PAGEREF _Toc410086730 �73��

Class OLAPMeasure	� GOTOBUTTON _Toc410086731 � PAGEREF _Toc410086731 �74��

Property OLAPMeasure::scale (Read Only)	� GOTOBUTTON _Toc410086732 � PAGEREF _Toc410086732 �74��

Property OLAPMeasure::precision (Read Only)	� GOTOBUTTON _Toc410086733 � PAGEREF _Toc410086733 �74��

Property OLAPMeasure::type (Read Only)	� GOTOBUTTON _Toc410086734 � PAGEREF _Toc410086734 �75��

Property OLAPMeasure::dimensions (Read Only)	� GOTOBUTTON _Toc410086735 � PAGEREF _Toc410086735 �75��

Property OLAPMeasure::valueType (Read Only)	� GOTOBUTTON _Toc410086736 � PAGEREF _Toc410086736 �75��

Class OLAPMember	� GOTOBUTTON _Toc410086737 � PAGEREF _Toc410086737 �76��

Property OLAPMember::name (Read Only)	� GOTOBUTTON _Toc410086738 � PAGEREF _Toc410086738 �76��

Property OLAPMember::dimension (Read Only)	� GOTOBUTTON _Toc410086739 � PAGEREF _Toc410086739 �76��

Class OLAPMemberQuery	� GOTOBUTTON _Toc410086740 � PAGEREF _Toc410086740 �77��

Property OLAPMemberQuery::parameters (Read Only)	� GOTOBUTTON _Toc410086741 � PAGEREF _Toc410086741 �77��

Property OLAPMemberQuery::descriptors (Read Only)	� GOTOBUTTON _Toc410086742 � PAGEREF _Toc410086742 �77��

Method OLAPMemberQuery::keep	� GOTOBUTTON _Toc410086743 � PAGEREF _Toc410086743 �78��

Method OLAPMemberQuery::add	� GOTOBUTTON _Toc410086744 � PAGEREF _Toc410086744 �79��

Method OLAPMemberQuery::remove	� GOTOBUTTON _Toc410086745 � PAGEREF _Toc410086745 �80��

Method OLAPMemberQuery::removeMember	� GOTOBUTTON _Toc410086746 � PAGEREF _Toc410086746 �81��

Method OLAPMemberQuery::addMember	� GOTOBUTTON _Toc410086747 � PAGEREF _Toc410086747 �82��

Method OLAPMemberQuery::addAllFrom	� GOTOBUTTON _Toc410086748 � PAGEREF _Toc410086748 �83��

Method OLAPMemberQuery::removeAllFrom	� GOTOBUTTON _Toc410086749 � PAGEREF _Toc410086749 �84��

Method OLAPMemberQuery::keepAllFrom	� GOTOBUTTON _Toc410086750 � PAGEREF _Toc410086750 �85��

Method OLAPMemberQuery::addRelations	� GOTOBUTTON _Toc410086751 � PAGEREF _Toc410086751 �85��

Method OLAPMemberQuery::removeRelations	� GOTOBUTTON _Toc410086752 � PAGEREF _Toc410086752 �86��

Method OLAPMemberQuery::addGeneration	� GOTOBUTTON _Toc410086753 � PAGEREF _Toc410086753 �88��

Method OLAPMemberQuery::keepRelations	� GOTOBUTTON _Toc410086754 � PAGEREF _Toc410086754 �89��

Method OLAPMemberQuery::sortByValue	� GOTOBUTTON _Toc410086755 � PAGEREF _Toc410086755 �90��

Method OLAPMemberQuery::sortByHierarchy	� GOTOBUTTON _Toc410086756 � PAGEREF _Toc410086756 �91��

Method OLAPMemberQuery::sortByLevel	� GOTOBUTTON _Toc410086757 � PAGEREF _Toc410086757 �92��

Method OLAPMemberQuery::resetNaturalSortOrder	� GOTOBUTTON _Toc410086758 � PAGEREF _Toc410086758 �93��

Method OLAPMemberQuery::resort	� GOTOBUTTON _Toc410086759 � PAGEREF _Toc410086759 �93��

Method OLAPMemberQuery::selectAll	� GOTOBUTTON _Toc410086760 � PAGEREF _Toc410086760 �94��

Method OLAPMemberQuery::selectNone	� GOTOBUTTON _Toc410086761 � PAGEREF _Toc410086761 �95��

Method OLAPMemberQuery::newPropertyValueExpression	� GOTOBUTTON _Toc410086762 � PAGEREF _Toc410086762 �95��

Method OLAPMemberQuery::newCellValueExpression	� GOTOBUTTON _Toc410086763 � PAGEREF _Toc410086763 �96��

Method OLAPMemberQuery::newParameter	� GOTOBUTTON _Toc410086764 � PAGEREF _Toc410086764 �97��

Method OLAPMemberQuery::clone	� GOTOBUTTON _Toc410086765 � PAGEREF _Toc410086765 �98��

Method OLAPMemberQuery::validate	� GOTOBUTTON _Toc410086766 � PAGEREF _Toc410086766 �99��

Method OLAPMemberQuery::validateAsync	� GOTOBUTTON _Toc410086767 � PAGEREF _Toc410086767 �100��

Method OLAPMemberQuery::resultCount	� GOTOBUTTON _Toc410086768 � PAGEREF _Toc410086768 �101��

Method OLAPMemberQuery::getParameterByName	� GOTOBUTTON _Toc410086769 � PAGEREF _Toc410086769 �101��

Method OLAPMemberQuery::addDescriptor	� GOTOBUTTON _Toc410086770 � PAGEREF _Toc410086770 �102��

Method OLAPMemberQuery::removeDescriptor	� GOTOBUTTON _Toc410086771 � PAGEREF _Toc410086771 �103��

Method OLAPMemberQuery::addProperty	� GOTOBUTTON _Toc410086772 � PAGEREF _Toc410086772 �103��

Method OLAPMemberQuery::removeProperty	� GOTOBUTTON _Toc410086773 � PAGEREF _Toc410086773 �104��

Method OLAPMemberQuery::newBuffer	� GOTOBUTTON _Toc410086774 � PAGEREF _Toc410086774 �105��

Method OLAPMemberQuery::select	� GOTOBUTTON _Toc410086775 � PAGEREF _Toc410086775 �106��

Method OLAPMemberQuery::selectAllFrom	� GOTOBUTTON _Toc410086776 � PAGEREF _Toc410086776 �107��

Method OLAPMemberQuery::selectRelations	� GOTOBUTTON _Toc410086777 � PAGEREF _Toc410086777 �107��

Method OLAPMemberQuery::selectGeneration	� GOTOBUTTON _Toc410086778 � PAGEREF _Toc410086778 �108��

Method OLAPMemberQuery::getStatus	� GOTOBUTTON _Toc410086779 � PAGEREF _Toc410086779 �110��

Method OLAPMemberQuery::addMembers	� GOTOBUTTON _Toc410086780 � PAGEREF _Toc410086780 �110��

Class OLAPMemberScope	� GOTOBUTTON _Toc410086781 � PAGEREF _Toc410086781 �111��

Property OLAPMemberScope::name (Read Only)	� GOTOBUTTON _Toc410086782 � PAGEREF _Toc410086782 �111��

Property OLAPMemberScope::dimension (Read Only)	� GOTOBUTTON _Toc410086783 � PAGEREF _Toc410086783 �111��

Method OLAPMemberScope::newQuery	� GOTOBUTTON _Toc410086784 � PAGEREF _Toc410086784 �112��

Class OLAPMessage	� GOTOBUTTON _Toc410086785 � PAGEREF _Toc410086785 �113��

Property OLAPMessage::message (Read Only)	� GOTOBUTTON _Toc410086786 � PAGEREF _Toc410086786 �113��

Property OLAPMessage::errorCode (Read Only)	� GOTOBUTTON _Toc410086787 � PAGEREF _Toc410086787 �113��

Property OLAPMessage::nativeCode (Read Only)	� GOTOBUTTON _Toc410086788 � PAGEREF _Toc410086788 �113��

Property OLAPMessage::severity (Read Only)	� GOTOBUTTON _Toc410086789 � PAGEREF _Toc410086789 �113��

Class OLAPException	� GOTOBUTTON _Toc410086790 � PAGEREF _Toc410086790 �115��

Property OLAPException::maximumSeverity (Read Only)	� GOTOBUTTON _Toc410086791 � PAGEREF _Toc410086791 �115��

Property OLAPException::messages (Read Only)	� GOTOBUTTON _Toc410086792 � PAGEREF _Toc410086792 �115��

Class OLAPParameterHolder	� GOTOBUTTON _Toc410086793 � PAGEREF _Toc410086793 �116��

Property OLAPParameterHolder::value (Read/Write)	� GOTOBUTTON _Toc410086794 � PAGEREF _Toc410086794 �116��

Property OLAPParameterHolder::name (Read Only)	� GOTOBUTTON _Toc410086795 � PAGEREF _Toc410086795 �116��

Class OLAPProgressMonitor	� GOTOBUTTON _Toc410086796 � PAGEREF _Toc410086796 �117��

Property OLAPProgressMonitor::messages (Read Only)	� GOTOBUTTON _Toc410086797 � PAGEREF _Toc410086797 �117��

Method OLAPProgressMonitor::cancel	� GOTOBUTTON _Toc410086798 � PAGEREF _Toc410086798 �117��

Method OLAPProgressMonitor::wait	� GOTOBUTTON _Toc410086799 � PAGEREF _Toc410086799 �118��

Method OLAPProgressMonitor::getStatus	� GOTOBUTTON _Toc410086800 � PAGEREF _Toc410086800 �118��

Class OLAPProperty	� GOTOBUTTON _Toc410086801 � PAGEREF _Toc410086801 �120��

Property OLAPProperty::name (Read Only)	� GOTOBUTTON _Toc410086802 � PAGEREF _Toc410086802 �120��

Property OLAPProperty::type (Read Only)	� GOTOBUTTON _Toc410086803 � PAGEREF _Toc410086803 �120��

Property OLAPProperty::scope (Read Only)	� GOTOBUTTON _Toc410086804 � PAGEREF _Toc410086804 �121��

Property OLAPProperty::valueType (Read Only)	� GOTOBUTTON _Toc410086805 � PAGEREF _Toc410086805 �121��

Method OLAPProperty::getValue	� GOTOBUTTON _Toc410086806 � PAGEREF _Toc410086806 �121��

Class OLAPPropertyScope	� GOTOBUTTON _Toc410086807 � PAGEREF _Toc410086807 �123��

Property OLAPPropertyScope::scopeProperties (Read Only)	� GOTOBUTTON _Toc410086808 � PAGEREF _Toc410086808 �123��

Method OLAPPropertyScope::getPropertyByName	� GOTOBUTTON _Toc410086809 � PAGEREF _Toc410086809 �123��

Method OLAPPropertyScope::getAllProperties	� GOTOBUTTON _Toc410086810 � PAGEREF _Toc410086810 �124��

Class OLAPSchema	� GOTOBUTTON _Toc410086811 � PAGEREF _Toc410086811 �125��

Property OLAPSchema::schemaVersion (Read Only)	� GOTOBUTTON _Toc410086812 � PAGEREF _Toc410086812 �125��

Property OLAPSchema::schemaName (Read Only)	� GOTOBUTTON _Toc410086813 � PAGEREF _Toc410086813 �125��

Property OLAPSchema::connectionString (Read Only)	� GOTOBUTTON _Toc410086814 � PAGEREF _Toc410086814 �125��

Property OLAPSchema::language (Read/Write)	� GOTOBUTTON _Toc410086815 � PAGEREF _Toc410086815 �125��

Property OLAPSchema::availableLanguages (Read Only)	� GOTOBUTTON _Toc410086816 � PAGEREF _Toc410086816 �126��

Property OLAPSchema::driver (Read Only)	� GOTOBUTTON _Toc410086817 � PAGEREF _Toc410086817 �126��

Class OLAPSession	� GOTOBUTTON _Toc410086818 � PAGEREF _Toc410086818 �127��

Property OLAPSession::apiVersion (Read Only)	� GOTOBUTTON _Toc410086819 � PAGEREF _Toc410086819 �127��

Property OLAPSession::language (Read Only)	� GOTOBUTTON _Toc410086820 � PAGEREF _Toc410086820 �127��

Property OLAPSession::openConnections (Read Only)	� GOTOBUTTON _Toc410086821 � PAGEREF _Toc410086821 �127��

Property OLAPSession::installedDrivers (Read Only)	� GOTOBUTTON _Toc410086822 � PAGEREF _Toc410086822 �127��

Method OLAPSession::getDriverByName	� GOTOBUTTON _Toc410086823 � PAGEREF _Toc410086823 �128��

Method OLAPSession::openConnection	� GOTOBUTTON _Toc410086824 � PAGEREF _Toc410086824 �128��

Class OLAPValueDescriptor	� GOTOBUTTON _Toc410086825 � PAGEREF _Toc410086825 �130��

Property OLAPValueDescriptor::name (Read Only)	� GOTOBUTTON _Toc410086826 � PAGEREF _Toc410086826 �130��

Class OLAPValueExpression	� GOTOBUTTON _Toc410086827 � PAGEREF _Toc410086827 �131��

Property OLAPValueExpression::dataType (Read Only)	� GOTOBUTTON _Toc410086828 � PAGEREF _Toc410086828 �131��

Property OLAPValueExpression::displayString (Read Only)	� GOTOBUTTON _Toc410086829 � PAGEREF _Toc410086829 �131��

Property OLAPValueExpression::query (Read Only)	� GOTOBUTTON _Toc410086830 � PAGEREF _Toc410086830 �131��

Method OLAPValueExpression::opGT	� GOTOBUTTON _Toc410086831 � PAGEREF _Toc410086831 �132��

Method OLAPValueExpression::opGE	� GOTOBUTTON _Toc410086832 � PAGEREF _Toc410086832 �133��

Method OLAPValueExpression::opLT	� GOTOBUTTON _Toc410086833 � PAGEREF _Toc410086833 �134��

Method OLAPValueExpression::opLE	� GOTOBUTTON _Toc410086834 � PAGEREF _Toc410086834 �135��

Method OLAPValueExpression::opEQ	� GOTOBUTTON _Toc410086835 � PAGEREF _Toc410086835 �136��

Method OLAPValueExpression::opNE	� GOTOBUTTON _Toc410086836 � PAGEREF _Toc410086836 �137��

Method OLAPValueExpression::isMissing	� GOTOBUTTON _Toc410086837 � PAGEREF _Toc410086837 �138��

Method OLAPValueExpression::isBetween	� GOTOBUTTON _Toc410086838 � PAGEREF _Toc410086838 �139��

Method OLAPValueExpression::isInTopN	� GOTOBUTTON _Toc410086839 � PAGEREF _Toc410086839 �140��

Method OLAPValueExpression::isInBottomN	� GOTOBUTTON _Toc410086840 � PAGEREF _Toc410086840 �141��

Method OLAPValueExpression::isInPercentile	� GOTOBUTTON _Toc410086841 � PAGEREF _Toc410086841 �142��

Class OLAPValueType	� GOTOBUTTON _Toc410086842 � PAGEREF _Toc410086842 �144��

Property OLAPValueType::type (Read Only)	� GOTOBUTTON _Toc410086843 � PAGEREF _Toc410086843 �144��

5 Collection Classes	� GOTOBUTTON _Toc410086844 � PAGEREF _Toc410086844 �145��

Class OLAPCellCollection	� GOTOBUTTON _Toc410086845 � PAGEREF _Toc410086845 �145��

Method OLAPCellCollection::_NewEnum	� GOTOBUTTON _Toc410086846 � PAGEREF _Toc410086846 �145��

Method OLAPCellCollection::Add	� GOTOBUTTON _Toc410086847 � PAGEREF _Toc410086847 �146��

Method OLAPCellCollection::Count	� GOTOBUTTON _Toc410086848 � PAGEREF _Toc410086848 �146��

Method OLAPCellCollection::Item	� GOTOBUTTON _Toc410086849 � PAGEREF _Toc410086849 �146��

Method OLAPCellCollection::Remove	� GOTOBUTTON _Toc410086850 � PAGEREF _Toc410086850 �147��

Class OLAPConnectionCollection	� GOTOBUTTON _Toc410086851 � PAGEREF _Toc410086851 �147��

Class OLAPCubeEdgeCollection	� GOTOBUTTON _Toc410086852 � PAGEREF _Toc410086852 �148��

Class OLAPDimensionCollection	� GOTOBUTTON _Toc410086853 � PAGEREF _Toc410086853 �149��

Class OLAPDriverCollection	� GOTOBUTTON _Toc410086854 � PAGEREF _Toc410086854 �150��

Class OLAPEdgeBufferCollection	� GOTOBUTTON _Toc410086855 � PAGEREF _Toc410086855 �151��

Class OLAPEdgeLayerBufferCollection	� GOTOBUTTON _Toc410086856 � PAGEREF _Toc410086856 �152��

Class OLAPEdgeLayerCellCollection	� GOTOBUTTON _Toc410086857 � PAGEREF _Toc410086857 �153��

Class OLAPHierarchyCollection	� GOTOBUTTON _Toc410086858 � PAGEREF _Toc410086858 �154��

Class OLAPLanguageCollection	� GOTOBUTTON _Toc410086859 � PAGEREF _Toc410086859 �155��

Class OLAPLevelCollection	� GOTOBUTTON _Toc410086860 � PAGEREF _Toc410086860 �156��

Class OLAPMemberCollection	� GOTOBUTTON _Toc410086861 � PAGEREF _Toc410086861 �157��

Class OLAPMemberQueryCollection	� GOTOBUTTON _Toc410086862 � PAGEREF _Toc410086862 �158��

Class OLAPMessageCollection	� GOTOBUTTON _Toc410086863 � PAGEREF _Toc410086863 �159��

Class OLAPParameterHolderCollection	� GOTOBUTTON _Toc410086864 � PAGEREF _Toc410086864 �160��

Class OLAPPropertyCollection	� GOTOBUTTON _Toc410086865 � PAGEREF _Toc410086865 �161��

Class OLAPSchemaCollection	� GOTOBUTTON _Toc410086866 � PAGEREF _Toc410086866 �162��

Class OLAPValueDescriptorCollection	� GOTOBUTTON _Toc410086867 � PAGEREF _Toc410086867 �163��

��Preface

This document specifies the On-Line Analytical Processing (OLAP) Application Program Interface (API), Version 2.0. The Multi-Dimensional API (MDAPI TM) is a public, nonproprietary specification published by the OLAP Council, a not-for-profit association of vendors of multidimensional database software.

Scope

The Version 2.0 MDAPI TM provides applications with read-only access to OLAP multidimensional databases. This version provides

Server connection and login capabilities

Metadata functions

Filter, sort, and cube definition functions

Data fetch functions

Error handling

The API also supports the pass-through of vendor-specific extensions. Future versions of this specification will support additional capabilities.

About this document

The Version 2 MDAPI TM is an object-oriented API. OLAP objects such as cubes, hierarchies, and dimensions are represented as classes. The model was designed using the Unified Modeling Language (UML), a language-neutral object modeling language that is in common use. A separate document, the MDAPI Programmer’s Guide, describes the API in terms of model elements such as classes, attributes, associations, and methods. This document is a reference guide for COM programmers.

Most of this document describes the interfaces that implement the API. For most interfaces and classes, the following information is shown:

A declaration of the class.

A description of the class which discusses its purpose and usage.

A list of any properties of the class, followed by a description of each property. Properties are listed with a type followed by a symbolic name.

A list of any methods of the class, followed by a description of each method. Methods are listed with a calling sequence in the form HRESULT-name(parameter-1-type parameter-1-symbolic-name, parameter-2-type parameter-2-symbolic-name,…,parameter-n-type parameter-n-symbolic-name, return-type *retval). The descriptive information that is shown for a method is described below.

The following information is shown for methods:

A declaration of the method

A description of the method which discusses its purpose and usage. This may include descriptions of errors that may be signaled by the method.

A table that shows the calling parameters for the method. A type, symbolic name, and brief description are shown for each parameter.

The type of object that the method returns.

A list of errors that the method may raise.

A description of pre-conditions that must be satisfied if the method is to execute successfully.

A description of post-conditions that describe any side effects of invoking the method.

Organization of this document

Chapter 1 is an introduction to the COM implementation of the MDAPI.

Chapter 2 discusses environmental considerations for COM. This includes such language-specific matters as the representation of collections and error handling..

Chapter 3 describes enumerations used in the API.

Chapter 4 describes most of the classes that constitute the API, based on the MDAPI object model.

Chapter 5 describes the COM implementation of the collection classes.

�Introduction

Microsoft’s Component Object Model , COM, has become central to Microsoft’s systems software strategy. From local scope to enterprise, Internet and beyond, the COM model fuels the Microsoft enterprise. Though originally just a Windows implementation, COM and its distributed model, DCOM, can now be found on UNIX systems and even on MVS. Given COM’s wide distribution, the OLAP Council’s Multidimensional API, MDAPI version 2.0, includes a COM implementation. This document looks at the following issues with respect to the COM implementation of the MDAPI:

COM environmental considerations

Common data type conversions from the object model to COM

Error handling

Multi-vendor support

Sessions

Collections

Enumerations

The Any type

Attributes

Accessing base classes

�

�Environmental considerations

The MDAPI object model represents a fairly high-level view of the API. Although it is precise about the nature of the objects that constitute the model and the relationships between them, it does not address the low-level details that allow a programmer to develop an application. The model cannot be specific about these details, because the model has to apply to a variety of programming languages, and the details are specific to a particular language.

This chapter describes in general terms the techniques that were used to map the MDAPI object model to COM. The reference that follows describes the COM classes, attributes, and methods that constitute the COM implementation of the MDAPI in detail. But an understanding of the approach will help you conceptualize the API in a way that will make its use easier and more intuitive.

Parameter passing

COM methods take zero or more parameters, can return 1 or more values through parameters and always return a value of type HRESULT. HRESULT is a COM defined status/error type. One of the method parameters is assigned the retval attribute, indicating that this is the return value of the method.

For example, one of the UML methods is CubeEdge::getCellIndex :

long getCellIndex(MemberCollection reference);

In the COM interface definition language the translation is :

[id(7)] HRESULT getCellIndex([in] IOLAPMemberCollection *reference, [out, retval] long *retval);

Other objects can be returned as well. For example, in UML there is the method CubeEdge::getDimensions();�

In COM IDL the translation is :

[id(2)] HRESULT getDimensions([out, retval] IOLAPDimensionCollection **retval);

Note that to return an interface you need to have a pointer to a pointer to the interface as the parameter. In IDL an object is a pointer to an interface. To return an interface you need an address into which to put a pointer to an interface.

If an interface is an input parameter it appears as a pointer to the interface, as in the CubeEdge::getCellIndex example above. The parameter named “reference”, of type MemberCollection, is passed as a pointer to the IOLAPMemberCollection interface.

Common Data Type Conversions

The table in � REF _Ref409415621 * MERGEFORMAT �Figure 2-1� notes translations from UML to COM.

UML�COM��int�short��long�long��string�BSTR��OLAPAny�VARIANT��Date�DATE��boolean�BOOL��Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC \r 1 �1� - Common data type conversions

Error handling

HRESULT values can be tested with the macros FAILED () or SUCCEEDED (). If a method has FAILED, then the client can get the IErrorInfo interface using standard COM mechanisms, and then call QueryInterface for __uuidof(IOLAPException) to get the interface to the OLAPException object.

When an exception occurs in an MDAPI method call, the exception information is captured in one or more Message objects. Each Message object has a status code and a textual message. The MDAPI adds error information at each level of the call stack as it unwinds after an error. Each error is recorded in a Message object, and placed into a MessageCollection object, which is accessible through the messages property in the OLAPException object. The OLAPException object is then associated with the client’s thread, so that it can be retrieved through the IErrorInfo interface. This allows a client to examine the call stack of a particular exception.

Multi-vendor support

The MDAPI is principally a specification. The OLAP Council publishes the specification, but it does not provide an implementation of the MDAPI. The OLAP vendors which are the members of the OLAP Council provide implementations of the MDAPI. A particular client may use more than one client’s implementation of the MDAPI, perhaps concurrently.

Vendors may add proprietary extensions to the MDAPI to allow applications to use specialized features of that vendor’s products, or to address perceived limitations in the API. So a particular implementation of the MDAPI may differ somewhat from the specification.

The need to support multiple implementations of the same API, and to support extensions to the API that vary from vendor to vendor, is an unusual one. Fortunately, COM provides a way in which one can provide additional interfaces. An implementation can expose multiple interfaces, including extensions. The client can query for the additional interfaces. Base MDAPI interfaces will remain unchanged from all vendors. But objects can be queried for extended interfaces supported by individual vendors. By specifying the MDAPI as a set of interfaces, the OLAP Council allows vendors considerable flexibility to implement the API.

There are a handful of classes that were written by the OLAP Council and are provided with all vendors’ implementations. These are used to “bootstrap” the API so that an application can discover which implementations are available, and are described in the next section, �ref _Ref401161085 * Mergeformat �Session�.

Session

A COM application uses the Session class to get started with the MDAPI. Session is one of the few MDAPI classes that can be instantiated with CoCreateInstance.

The Session class has methods that allow an application to discover which implementations are installed on a particular machine, and to load a vendor-specific class with which the application can begin using a chosen implementation.

Collections

COM provides a standard way in which a collection of interfaces can be returned to the client. This is implemented in a collection interface. Given an interface ICell, we could define an interface ICellCollection as :

[propget, id(DISPID_NEWENUM), helpstring("property _NewEnum"), restricted] HRESULT _NewEnum([out, retval] LPUNKNOWN *pVal);

[id(2), helpstring("method Add")] HRESULT Add([in] ICell *pCell);

[propget, id(3), helpstring("property Count")] HRESULT Count([out, retval] long *pVal);

[propget, id(DISPID_VALUE), helpstring("property Item")] HRESULT Item([in] long index, [out,retval] ICell ** ppCell);

[id(5), helpstring("method Remove")] HRESULT Remove([in] long index);

Many OLAP objects have relationships to a number of other objects. For instance, a Dimension may have a number of Hierarchy objects. Relationships like this are represented in the model as a one-to-many relationship. Therefore one can get an IOLAPHierarchy collection from an IOLAPDimension with:

HRESULT hierarchies([out, retval] IOLAPHierarchyCollection **retval);

Applications need to be able to navigate these relationships for metadata discovery. Applications have to be able to find out how may related objects there are, to enumerate the objects, and to get an object by specifying its index.

Enumerations

COM has full support for enumeration types. COM IDL allows an ‘enum’ specification. MDAPI enumeration classes are translated into COM enumerations.

Any

A number of MDAPI objects have to be able to refer to an object that may be any one of several different types. After validation, the Cube object has a collection of cell values that may be of different types.

The Any UML type is translated to a COM VARIANT type. Microsoft’s C++ compiler provides the _variant_t compiler class making handling relatively easy. It is easy to set and extract a variant with any variant supported data type. A _variant_t object can be tested to see if it is empty or NULL.

Attributes

COM interfaces can have data fields that resemble the UML attributes in the MDAPI object model. However, most of the MDAPI attributes are read-only for application developers.

Accessing Base Classes

In COM one interface can inherit from another. In order to obtain one interface of an object given an existing interface, you "QI" or call QueryInterface. IOLAPMemberScope is an example of a base MDAPI class from which other interfaces such as IOLAPDimension and IOLAPHierarchy inherit. In several places the API requires IOLAPMemberScope to be passed as a parameter. Visual C++ 5.X provides several means to simplify this task. One example is using the template classes CComPtr and CComQIPtr.

Assuming :

#include <atlbase.h>

CComPtr<IOLAPDimension> pOLAPDim; // value is set

then you can get pOLAPMemberScope with :

CComQIPtr <IOLAPMemberScope, __uuidof (IOLAPMemberScope)>

pOLAPMemberScope ((LPUNKNOWN) pOLAPDim);

if (pOLAPMemberScope !=NULL)

// you can now use pOLAPMemberScope as a parameter

�Enumerations

This section is a reference that describes all of the enumerations used by the API. It is arranged by category.

OLAPQuery

Enumeration OLAPSortOrder

SortOrder is an enumeration of the possible sorting orders

OLAP_ASCENDING	Sort in ascending order. For a hierarchical sort, parents follow children.

OLAP_DESCENDING	Sort in descending order. For a hierarchical sort, parents precede children.

�

Enumeration OLAPQueryStatus

QueryStatus is an enumeration class representing the set of all possible states of a Cube or MemberQuery.

OLAP_VALIDATED	The query has been validated, so data can be fetched. It has not been modified since then.

OLAP_VALIDATING	The query is currently being validated asynchronously. The only operation valid on the query at this time is getStatus() - all other operations will raise an exception.

OLAP_MODIFIED	The query has been modified in some way since it was last validated. Data may be fetched, but it will not necessarily correspond to the current definition.

OLAP_INITIAL	The query has not yet been validated. Data may not be fetched.

�

Enumeration OLAPInitialSelection

InitialSelection is an enumeration class that represents whether a MemberSet initially includes all of the members from its creating scope of none of the members.

OLAP_ALL	The query should initially contain all of the members from the creating scope.

OLAP_NONE	The query should initially be empty.

�

�OLAPAsynchronousSupport

Enumeration OLAPProgressStatus

ProgressStatus is an enumeration class representing the set of all possible states of a ProgressMonitor.

OLAP_OPERATION_CANCELED	The asynchronous operation has been canceled.

OLAP_OPERATION_COMPLETED	The asynchronous operation has completed.

OLAP_OPERATION_ERROR	An error occurred during the performance of the asynchronous operation.

OLAP_OPERATION_IN_PROGRESS	The asynchronous operation is in progress.

�

�OLAPCommon

Enumeration OLAPErrorCode

ErrorCode is an enumeration of the standard MDAPI status codes.

OLAP_INVALID_INDEX	An index was out of range.

OLAP_SERVER_ERROR	Non-MDAPI error; refer to the nativeCode status value.�

OLAP_WRONG_DIMENSIONALITY	The dimensions of a parameter are invalid or inconsistent with either another parameter or the object against which the method is invoked.

OLAP_BUFFER_AT_END	The current cell position in the edge is already at an end of the cells in the buffer.

OLAP_INVALID_VERTEX_SIZE	Too few or too many indices were specified in a vertex.

OLAP_INVALID_INDICES	An end index is smaller than the corresponding start index.

OLAP_NOT_VALIDATED	An operation that can be used only on a validated query was invoked on a query that has not been validated.

OLAP_DATATYPE_MISMATCH	The datatype of one or more cells does not match the datatype of the buffer extract method.

OLAP_BUFFER_INVALID	The buffer is invalid because the cube has been modified and revalidated.

OLAP_ASYNCHRONOUS_ERROR	An error occurred during the execution of an asynchronous operation.

OLAP_OPERATION_COMPLETED	An attempt to cancel an asynchronous operation failed because the operation had already completed.

OLAP_BUSY	One of the objects involved in the operation is currently involved in an asynchronous operation and cannot be accessed.

OLAP_OPERATION_CANCELED	An asynchronous operation was canceled.

OLAP_INVALID_PROPERTY	The Property supplied is not defined for the receiver.

OLAP_CONNECTION_CLOSED	Objects belonging to a Connection that has closed are being used.

OLAP_EDGE_ERROR	The proposed operation cannot complete because an error associated with a CubeEdge has occurred.

OLAP_DIFFERENT_CONNECTION	Objects belonging to different Connections are being combined.

OLAP_EXPRESSION_TYPE_ERROR	A supplied ValueExpression has an invalid DataType for the operation being performed.

OLAP_NAME_IN_USE	An attempt to create a new object failed because the supplied name was already in use.

OLAP_INCOMPATIBLE_EXPRESSION	The supplied ValueExpression is not valid for the object with which it was used.

OLAP_MISSING	The value is missing.

OLAP_INDEX_OUT_OF_BOUNDS	The index is greater than the zero-based index of the last element in the collection.

OLAP_NOT_IN_COLLECTION	The specified object is not in the collection.

�

Enumeration OLAPSeverityCode

SeverityCode is an enumeration of the standard MDAPI error severity codes.

OLAP_SEVERITY_ERROR	The operation failed because the parameters were invalid or inconsistent parameters or one or more of the objects was not in the appropriate state.

OLAP_SEVERITY_SEVERE_ERROR	The operation failed because of an internal error.

OLAP_SEVERITY_FATAL_ERROR	The operation failed because of an internal error. The connection and all associated objects are invalid.

�

�OLAPMetaData

Enumeration OLAPHierarchyDirection

HierarchyDirection enumerates the options for specifying direction within a hierarchy.

OLAP_HEIGHT	The direction is "up" the hierarchy from the leaves.

OLAP_DEPTH	The direction is "down" the hierarchy from the root.

�

Enumeration OLAPDimensionType

Enumeration of the types of dimensions recognized by the MDAPI.

OLAP_MEASURE_DIMENSION	The Dimension is a set of measures.

OLAP_OTHER_DIMENSION	The Dimension is neither a measure dimension nor a time dimension.

OLAP_TIME_DIMENSION	The Dimension is a time dimension.

�

Enumeration OLAPMemberRelation

MemberRelation enumerates the possible sets of hierarchically related members that may be specified in API calls.

OLAP_ROOT	The top of the hierarchy. Roots have no parents.

OLAP_PARENT	The parent of a given member in the hierarchy. Each member has at most one parent.

OLAP_CHILDREN	The children of member m are the members of the hierarchy that have m as their parent.

OLAP_SIBLINGS	The siblings of member m are the members of the hierarchy that have m.parent as their parent.

OLAP_ANTECEDENTS	The antecedents of member m are the members of the hierarchy that can be reached by following successive parent links from m up the hierarchy.

OLAP_DESCENDANTS	The descendants of member m are the members that can be reached by following successive child links from m down the hierarchy.

�

Enumeration OLAPDataType

This class enumerates the data types supported by the MDAPI, for use in identifying the data types that may be retrieved from cube cells and user-defined properties.

OLAP_DOUBLE	A double-precision, eight-byte, floating point number.

OLAP_FLOAT	A single-precision, four-byte, floating point number.

OLAP_LONG	A four-byte integer.

OLAP_TEXT	A string of characters.

OLAP_BOOLEAN	A logical boolean value, capable of expressing the values True and False.

OLAP_DATE	A calendar date.

�

�Classes

This section is a reference that describes all of the classes and methods except collection classes. Collection classes are documented in Chapter � REF _Ref410000917 \n �5�. This chapter is arranged alphabetically by class name.

Class OLAPBuffer

interface IOLAPBuffer : IDispatch

A Buffer represents a portion of a validated query that has been retrieved. The Buffer classes provide methods that facilitate navigating the data.��Typically, after creating or modifying a query and validating it, an application will call Cube::newBuffer. The application indicates its area of immediate interest, and the MDAPI downloads all necessary data.��A Buffer can be created only from a validated cube. It then remains valid until the cube is again validated. This allows an application to continue to retrieve data from a buffer while modifying a query.��The Buffer classes can be used in either of two ways:��1) By 'stepping' through the data, calling EdgeBuffer::next() and EdgeBuffer::previous(). These methods manage a set of current cells, one for each dimension and one for the data values can then be extracted from the current cell by calling Cell::getValue and specifying a ValueDescriptor.��2) By explicitly extracting specified ranges of cells from the buffer. An application can extract a set of cells, and then extract values from them by calling Cell::getValue. Or, an application can call methods to directly get native values from the buffer.�

Properties

long extent�long valuesCount�IOLAPEdgeBufferCollection* edgeBuffers�IOLAPCube* cube�IOLAPCell* currentCell�

Property OLAPBuffer::extent (Read Only)

HRESULT extent(long *retval);

Get the number of data cells in the buffer. This is the product of the extents of all of the edge buffers.

Property OLAPBuffer::valuesCount (Read Only)

HRESULT valuesCount(long *retval);

Get the number of values available in each data cell of the buffer.

Property OLAPBuffer::edgeBuffers (Read Only)

HRESULT edgeBuffers(IOLAPEdgeBufferCollection **retval);

Get an ordered collection of EdgeBuffers, one for each edge of the query. The order mirrors the order of the collection of CubeEdges for the Cube.

Property OLAPBuffer::cube (Read Only)

HRESULT cube(IOLAPCube **retval);

Get the Cube from which the buffer was created.

Property OLAPBuffer::currentCell (Read Only)

HRESULT currentCell(IOLAPCell **retval);

Get the current data cell for the buffer. After creating a Buffer, the currentCell is set to the cell at the origin of the buffer. It is changed by calling EdgeBuffer::next, EdgeBuffer::previous, or EdgeBuffer::setIndex().

Methods

HRESULT getCells (SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPCellCollection **retval);�HRESULT getCellsFloat (SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(float) *values);�HRESULT getCellsDouble (SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(double) *values);�HRESULT getCellsText (SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(BSTR) *values);�HRESULT getCellsLong (SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(long) *values);�HRESULT getCellsDate (SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(DATE) *values);�HRESULT getCellsBool (SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(BOOL) *values);

Method OLAPBuffer::getCells

HRESULT getCells(SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPCellCollection **retval);

Extracts a collection of data cells from a Buffer.��The collection is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and the order of the cells in the collection.��Possible error codes include:�BUFFER_INVALID - the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	SAFEARRAY(long)*		start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

[in]	SAFEARRAY(long)*		end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract

[out, retval]	IOLAPCellCollection**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPBuffer::getCellsFloat

HRESULT getCellsFloat(SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(float) *values);

Fills an array of single-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	SAFEARRAY(long)*		start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

[in]	SAFEARRAY(long)*		end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(float)*		values	The array of single-precision floating-point numbers to fill.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPBuffer::getCellsDouble

HRESULT getCellsDouble(SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(double) *values);

Fills an array of double-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'double'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	SAFEARRAY(long)*		start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

[in]	SAFEARRAY(long)*		end	An array of consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(double)*		values	The array of double-precision floating-point numbers to fill.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPBuffer::getCellsText

HRESULT getCellsText(SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(BSTR) *values);

Fills an array of strings representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'text'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	SAFEARRAY(long)*		start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

[in]	SAFEARRAY(long)*		end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(BSTR)*		values	The array of strings to fill.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPBuffer::getCellsLong

HRESULT getCellsLong(SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(long) *values);

Fills an array of longs representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'long'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	SAFEARRAY(long)*		start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

[in]	SAFEARRAY(long)*		end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(long)*		values	The array of longs to fill.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPBuffer::getCellsDate

HRESULT getCellsDate(SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(DATE) *values);

Fills an array of Dates representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'date'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	SAFEARRAY(long)*		start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

[in]	SAFEARRAY(long)*		end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(DATE)*		values	The array of dates to fill.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPBuffer::getCellsBool

HRESULT getCellsBool(SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPValueDescriptor *valueType, SAFEARRAY(BOOL) *values);

Fills an array of booleans representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'boolean'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	SAFEARRAY(long)*		start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.

[in]	SAFEARRAY(long)*		end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(BOOL)*		values	The array of booleans to fill.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPCell

interface IOLAPCell : IDispatch

A Cell represents the contents of a single cell of data. Logically, there is a Cell for each data cell in the buffer. The MDAPI does not represent the collection of Cells for a Buffer, but instead relies on methods on Buffer to obtain Cells. This allows implementations to efficiently represent these collections, which may be sparse.��A cell may contain values for more than one value type. For instance, a cell may contain both a numeric value for a measure, used for calculations, and a formatted string, used for display. This is represented by an association with a number of OLAPAny objects, qualified by the ValueDescriptor for the corresponding ValueType.

Properties

VARIANT value�

Property OLAPCell::value (Read Only)

HRESULT value(IOLAPValueDescriptor *valueType, VARIANT *retval);

Get the value of the cell for the specified value descriptor.

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueDescriptor*		valueType	

Methods

�Class OLAPConnection

interface IOLAPConnection : IOLAPPropertyScope

The Connection class has three different duties in the MDAPI. Its first role is to represent a connection between a client of the MDAPI and a data source. To this end it contains operations to manage and close the connection. Its second role is to act as the root object for all metadata navigation within the data source. Its third role is to describe the capabilities and policies of the data source and the server.��All objects obtained through a Connection are valid only within the context of that Connection. In particular, any attempt to mix objects obtained from different Connections is considered an error and will cause an exception to be raised. Moreover, all objects obtained from a Connection become invalid once that connection is closed. Any attempt to use these objects will result in an exception.��Instances of Connection can be thought of as "hypercubes": the connection is made up of a number of "dimensions", one (and only one) of which is the "measures dimension". A "cell" is defined by a combination of one "member" from each dimension. Each cell contains a number of values, distinguished by "value descriptors". An application can navigate to any of these objects from the Connection.��Connection is a subtype of PropertyScope. Any properties contained in the properties collection attached to the connection are valid for all members of all dimensions contained in the connection. Each Connection must contain at least two Properties, "name" and "caption".

Properties

long maxEdges�long minEdges�IOLAPLanguage* language�IOLAPLanguageCollection* supportedLanguages�IOLAPSession* session�IOLAPDimension* measureDimension�IOLAPDimensionCollection* dimensions�IOLAPValueDescriptorCollection* descriptors�IOLAPValueDescriptor* defaultDescriptor�IOLAPProperty* defaultProperty�

Property OLAPConnection::maxEdges (Read Only)

HRESULT maxEdges(long *retval);

Get the maximum number of edges that a cube can have.��Invariants:�(1) maxEdges >= minEdges�(2) maxEdges >=3

Property OLAPConnection::minEdges (Read Only)

HRESULT minEdges(long *retval);

Get the minimum number of edges that a cube can have.��Invariants:�(1) minEdges <= maxEdges�(2) minEdges <=3

Property OLAPConnection::language (Read/Write)

HRESULT language(IOLAPLanguage **retval);

Get/set the default language for error messages produced in the domain of the Connection.

Property OLAPConnection::supportedLanguages (Read Only)

HRESULT supportedLanguages(IOLAPLanguageCollection **retval);

Get the list of languages supported by the Connection.

Property OLAPConnection::session (Read Only)

HRESULT session(IOLAPSession **retval);

Get the instance of Session to which the connection is attached

Property OLAPConnection::measureDimension (Read Only)

HRESULT measureDimension(IOLAPDimension **retval);

Get the unique instance of Dimension representing the measure dimension.

Property OLAPConnection::dimensions (Read Only)

HRESULT dimensions(IOLAPDimensionCollection **retval);

Get the dimensions of the connection.

Property OLAPConnection::descriptors (Read Only)

HRESULT descriptors(IOLAPValueDescriptorCollection **retval);

Get the set of all ValueDescriptors defining cell and property values for the Connection.

Property OLAPConnection::defaultDescriptor (Read Only)

HRESULT defaultDescriptor(IOLAPValueDescriptor **retval);

Get the default descriptor. This is the distinguished instance of ValueDescriptor with the name "value" that defines the default value for each Measure and Property. Whenever a Cube or MemberQuery is created, it will be associated with this instance of ValueDescriptor by default.

Property OLAPConnection::defaultProperty (Read Only)

HRESULT defaultProperty(IOLAPProperty **retval);

Get the default property. This is the distinguished instance of Property with the name "name" that defines the default property for each PropertyScope. Whenever a MemberQuery is created, it will be associated with this instance of Property by default.

Methods

HRESULT newCube (BSTR name, long numEdges, OLAPInitialSelection initialSelection, IOLAPCube **retval);�HRESULT closeConnection ();

Method OLAPConnection::newCube

HRESULT newCube(BSTR name, long numEdges, OLAPInitialSelection initialSelection, IOLAPCube **retval);

Creates a new Cube object on the connection with the specified number of edges. A MemberQuery instance will be created for each of the dimensions of the Connection. Each MemberQuery will be oriented on one of the edges. This initial orientation is vendor-specific, and may be discovered by examining the cube.��The new cube's lifetime will not extend past that of the connection.��Possible error codes include:�EDGE_ERROR		The given number of edges is invalid.�

Parameters

Dir		Type		Name		Description 		

[in]	BSTR		name	Name for the cube. The MDAPI does not use this name in any way.

[in]	long		numEdges	The initial number of edges on the cube.

[in]	OLAPInitialSelection		initialSelection	If ALL, each MemberQuery instance initially contains all of the members of its dimension. If NONE, the MemberQuery instances are initially empty.

[out, retval]	IOLAPCube**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPConnection::closeConnection

HRESULT closeConnection();

Immediately closes the connection, releasing any connection thread opened by Session::openConnection(). All resources allocated to that thread (including all metadata, query objects, and cube views) are released by the Connection object.��After this method is called, the object cannot be used again. ��Possible error codes include:�CONNECTION_CLOSED	The connection has already been closed.�

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPCube

interface IOLAPCube : IDispatch

A Cube represents a query definition and, following validation, a result set. It holds both query definition information in the form of MemberQueries, and result information. A cube may be in an invalidated state or a validated state. When invalidated, calling the getCell() method on a cube or some methods of the CubeEdge will fail. When a cube is first created, it is in an invalidated state. It will also become invalid for the purposes of fetching member information and cell data from it whenever its query definition is modified. Successful execution of the validate() call is required to put the cube in a validated state.��Dimensions are oriented onto the cube's associated CubeEdge objects; each dimension is mapped to only one edge of the cube.���

Properties

BSTR name�IOLAPCubeEdgeCollection* edges�IOLAPValueDescriptorCollection* descriptors�

Property OLAPCube::name (Read/Write)

HRESULT name(BSTR *retval);

Get/set the name of the cube. This is a place to attach descriptive information to the cube. It has no semantic meaning within the model, and is not constrained to be unique.

Property OLAPCube::edges (Read Only)

HRESULT edges(IOLAPCubeEdgeCollection **retval);

Get the CubeEdge objects connected to the Cube instance.�

Property OLAPCube::descriptors (Read Only)

HRESULT descriptors(IOLAPValueDescriptorCollection **retval);

Get the ValueDescriptor objects that specify the values to be returned for each cell. By default this set is initialized to contain the distinguished instance Connection:: defaultDescriptor.

Methods

HRESULT pivot (IOLAPDimension *dimension, IOLAPCubeEdge *toEdge, IOLAPDimension *beforeDim);�HRESULT rotate (IOLAPDimension *dim1, IOLAPDimension *dim2);�HRESULT setContext (IOLAPMemberCollection *cellRef, IOLAPHierarchyCollection *hiers);�HRESULT setOrientation (IOLAPCubeEdge *edge, IOLAPDimensionCollection *dimensions);�HRESULT validate ();�HRESULT validateAsync (IOLAPProgressMonitor **retval);�HRESULT getCell (SAFEARRAY(long) *coordinates, IOLAPValueDescriptor *descriptor, VARIANT *retval);�HRESULT clone (IOLAPCube **retval);�HRESULT newBuffer (SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPBuffer **retval);�HRESULT createEdge (IOLAPCubeEdge **retval);�HRESULT removeEdge (IOLAPCubeEdge *edge);�HRESULT addDescriptor (IOLAPValueDescriptor *descriptor);�HRESULT removeDescriptor (IOLAPValueDescriptor *descriptor);�HRESULT getSubQuery (IOLAPDimension *dim, IOLAPMemberQuery **retval);�HRESULT getStatus (OLAPQueryStatus *retval);�HRESULT getOrientation (IOLAPDimension *dimension, IOLAPCubeEdge **retval);�HRESULT pivotToNestLevel (IOLAPDimension *dimension, IOLAPCubeEdge *toEdge, long nestLevel);

Method OLAPCube::pivot

HRESULT pivot(IOLAPDimension *dimension, IOLAPCubeEdge *toEdge, IOLAPDimension *beforeDim);

Places the given dimension on the given CubeEdge "toEdge". The MemberQuery associated within the dimension is removed from the nestedQueries collection of its original edge, and is inserted into the nestedQueries collection of toEdge just prior to the MemberQuery representing the Dimension "beforeDim". If beforeDim is not specified, the dimension is appended to the collection.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR 		The edge is not valid for this cube.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPDimension*		dimension	Dimension to orient on cube.

[in]	IOLAPCubeEdge*		toEdge	The edge to orient the Dimension onto.

[in]	IOLAPDimension*		beforeDim	Dimension of toEdge before which to place Dimension dimension.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::rotate

HRESULT rotate(IOLAPDimension *dim1, IOLAPDimension *dim2);

Swaps the orientation of two dimensions. The dimension of dim1 will be placed at the edge and nesting level of dim2, and dim2 will be placed at the edge and nesting level of dim1. If dim1 and dim2 are the same dimension, then this operation has no effect.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPDimension*		dim1	First dimension being swapped

[in]	IOLAPDimension*		dim2	Second dimension being swapped

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::setContext

HRESULT setContext(IOLAPMemberCollection *cellRef, IOLAPHierarchyCollection *hiers);

This method combines several common cube selection and orientation operations into one step to establish outer boundaries for the N-dimensional data cube that will be the subject of the cube's view.��Given a collection of members 'cellRef' and a collection of corresponding hierarchies in 'hiers', it performs two distinct operations for each dimension that has a member in 'cellRef': ��· Restricts the dimension to only the given member and its descendants in the hierarchy;�· Maps the dimension to a predictable nesting level on the final edge of the cube.��For each hierarchy in 'hiers', there must be a corresponding member in 'cellRef'.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMemberCollection*		cellRef	Collection of members, no more than one member per dimension, each defining the relative root or top of the hierarchy for the context

[in]	IOLAPHierarchyCollection*		hiers	Collection of hierarchies, one per member listed in cellRef, each defining the hierarchy for the context.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::setOrientation

HRESULT setOrientation(IOLAPCubeEdge *edge, IOLAPDimensionCollection *dimensions);

Orients the specified dimensions on the given edge of the cube. Note that more than one dimension can be placed along, or "nested" on, a given edge (i.e. row, column, or page). In this case the first dimension in the array is innermost (i.e. closest to the data) and the last dimension in the array is outermost (i.e. farthest from the data). It is possible to have no dimensions along a given edge (e.g. no dimensions in the column edge) during query definition, but not at the point of validation.��Note that a dimension cannot be in two edges at the same time. For example, the "product" dimension cannot be both in the row and the column edges. The API will implement intelligent defaults. For example, assume that the "product" dimension is in the row edge, and setOrientation() is called to place the "product" dimension in the page edge. The "product" dimension will be removed from the row edge.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR 		Edge passed in is not valid.�INVALID_DIMENSIONS	Same dimension repeated more than once in dimensions.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPCubeEdge*		edge	The edge that dimensions are to be oriented onto.

[in]	IOLAPDimensionCollection*		dimensions	Ordered set of dimensions to be oriented onto edge.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::validate

HRESULT validate();

Performs validation of cube's definition and applied query objects, which will enable querying of member and cell information from cube if successful. To the degree that a vendor's implementation of this function also performs a query and fetches data, it is a synchronous operation: all querying and fetching will take place before the function returns.��Possible error codes include:�EDGE_ERROR		One of the edges of the cube has no dimensions.�BUSY			The cube is currently being validated asynchronously.�

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::validateAsync

HRESULT validateAsync(IOLAPProgressMonitor **retval);

This operation has the same effect as the validate() method, but is performed asynchronously. Control returns immediately to the caller while the cube validation occurs in the background. The method returns an instance of ProgressMonitor, which allows the client to monitor progress of the asynchronous operation. The cube will not be usable until the validation has concluded.��Possible error codes include:�EDGE_ERROR		One of the edges of the cube has no dimensions.�BUSY			The cube is currently being validated asynchronously.�

Parameters

Dir		Type		Name		Description 		

[out, retval]	IOLAPProgressMonitor**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::getCell

HRESULT getCell(SAFEARRAY(long) *coordinates, IOLAPValueDescriptor *descriptor, VARIANT *retval);

Retrieves a data value from the specified cell.��Possible error codes include:�INVALID_INDEX 		The coordinates were invalid for the cube�NOT_VALIDATED 		Cube definition has no been validated.�BUSY				The cube is currently being validated asynchronously.�INVALID_DESCRIPTOR 	The requested value is unavailable because the ValueDescriptor was not specified as part of the query definition.� _NOT_VALIDATED		The cube has not been successfully validated, so no data access is possible.�

Parameters

Dir		Type		Name		Description 		

[in]	SAFEARRAY(long)*		coordinates	An array of zero-based indices specifying the coordinates of the cell to get.

[in]	IOLAPValueDescriptor*		descriptor	The value descriptor that specifies which value is required from the cell. The descriptor must be one of the descriptors attached to the cube prior to cube validation.

[out, retval]	VARIANT*		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::clone

HRESULT clone(IOLAPCube **retval);

Create a complete copy of the cube query definition. Specifically, this method will create a new instance of Cube together with new copies of the CubeEdges and MemberQueries contained in the original cube. No metadata class will be copied. (So, for example, both the original and the copy will point to the same instances of Dimension.)��The new instance of Cube will begin in an invalidated state even if the original had been validated. It can be modified like any other cube, and its state is independent of the original.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�

Parameters

Dir		Type		Name		Description 		

[out, retval]	IOLAPCube**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::newBuffer

HRESULT newBuffer(SAFEARRAY(long) *start, SAFEARRAY(long) *end, IOLAPBuffer **retval);

Create a new buffer for the cube, specifying Cartesian start and end vertices in the cube for the buffer.��Possible error codes include:�BUSY				The cube is currently being validated asynchronously.�INVALID_VERTEX_SIZE	The wrong number of indices in vertex�INVALID_INDICES 	 	An end edge index is smaller than the corresponding start index�NOT_VALIDATED 		The cube has not been validated

Parameters

Dir		Type		Name		Description 		

[in]	SAFEARRAY(long)*		start	starting vertex in the cube for the buffer, as an array of longs, each of which is an index into an edge

[in]	SAFEARRAY(long)*		end	ending vertex in the cube for the buffer, as an array of longs, each of which is an index into an edge

[out, retval]	IOLAPBuffer**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.getStatus = VALIDATED

Method OLAPCube::createEdge

HRESULT createEdge(IOLAPCubeEdge **retval);

Creates a new instance of CubeEdge and attaches it to the cube. The new edge will be empty by default. This method will raise an exception if either the number of edges would exceed the limit imposed by the implementation or if it would exceed the number of dimensions.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR		The cube can have no more edges. �

Parameters

Dir		Type		Name		Description 		

[out, retval]	IOLAPCubeEdge**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::removeEdge

HRESULT removeEdge(IOLAPCubeEdge *edge);

Remove an existing instance of CubeEdge from the collection of edges of the cube. The method will raise an exception if there are any dimensions on the edge being removed. (The client can move the dimensions from the edge using the pivot() method.) This method will also raise an exception if the number of edges would be below the minimum limit imposed by the implementation.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR		The edge cannot be removed from the cube. �

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPCubeEdge*		edge	The instance of CubeEdge to be removed.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::addDescriptor

HRESULT addDescriptor(IOLAPValueDescriptor *descriptor);

Add an instance of ValueDescriptor to the collection contained by the cube. The set of ValueDescriptors attached to the cube is part of the query definition. Each cell in the cube can have multiple values. For example, each cell may have, in addition to the basic value, a formatted value, a background color, and a foreground color. Each kind of value present in the cell is represented by an instance of ValueDescriptor. (So, in the example above, there would be four instances, named "value", "formatted value", "background color", and "foreground color".) The only values that will be fetched by the cube are those in the descriptors set attached to the cube. When the cube is first created it will contain only the default ValueDescriptor (the one named "value" above). If the client needs the additional cell values, it must explicitly add the appropriate instances of ValueDescriptor to the cube by calling this method. ��Possible error codes include:�BUSY		The cube is currently being validated asynchronously.

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueDescriptor*		descriptor	The ValueDescriptor to be added.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::removeDescriptor

HRESULT removeDescriptor(IOLAPValueDescriptor *descriptor);

Remove an instance of ValueDescriptor from the collection contained by the cube. The values corresponding to the descriptor will no longer be fetched.��Possible error codes include:�BUSY		The cube is currently being validated asynchronously.

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueDescriptor*		descriptor	The instance of ValueDescriptor to be removed.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCube::getSubQuery

HRESULT getSubQuery(IOLAPDimension *dim, IOLAPMemberQuery **retval);

Return the instance of MemberQuery contained in the cube that corresponds to the given dimension.��Possible error codes include:�BUSY		The cube is currently being validated asynchronously.

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPDimension*		dim	The dimension whose MemberQuery is required.

[out, retval]	IOLAPMemberQuery**		retval	Method return value.

Returns

HRESULT

Method OLAPCube::getStatus

HRESULT getStatus(OLAPQueryStatus *retval);

Return the current status of the query.

Parameters

Dir		Type		Name		Description 		

[out, retval]	OLAPQueryStatus*		retval	Method return value.

Returns

HRESULT

Method OLAPCube::getOrientation

HRESULT getOrientation(IOLAPDimension *dimension, IOLAPCubeEdge **retval);

Gets the edge on which the given dimension is oriented.��Possible error codes include:�BUSY		The cube is currently being validated asynchronously�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPDimension*		dimension	The dimension for which to get the orientation.

[out, retval]	IOLAPCubeEdge**		retval	Method return value.

Returns

HRESULT

Method OLAPCube::pivotToNestLevel

HRESULT pivotToNestLevel(IOLAPDimension *dimension, IOLAPCubeEdge *toEdge, long nestLevel);

Places the given dimension on the given CubeEdge "toEdge". The MemberQuery associated within the dimension is removed from the nestedQueries collection of its original edge, and is inserted into the nestedQueries collection of toEdge at zero-based index 'nestLevel'.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR 		The edge is not valid for this cube.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPDimension*		dimension	The dimension to orient onto an edge

[in]	IOLAPCubeEdge*		toEdge	The edge onto which to orient the dimension.

[in]	long		nestLevel	The zero-based index in the ordered collection of dimensions on the edge at which to place the dimension.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPCubeEdge

interface IOLAPCubeEdge : IDispatch

A CubeEdge represents one edge of a Cube.��A cube edge is either validated or invalidated. All cube edges of a cube are validated when the cube is validated. The following methods will only work when the cube edge is validated:��resultCount()�getCellIndex()�getIndexMembers()�

Properties

BOOL suppressMissing�BOOL suppressZeros�IOLAPCube* cube�IOLAPMemberQueryCollection* nestedQueries�

Property OLAPCubeEdge::suppressMissing (Read/Write)

HRESULT suppressMissing(BOOL *retval);

Get/set a boolean value which indicates whether the query should filter out all member tuples for which the cell values are empty for all combinations of members on the other edges. (The cell values used are taken to be those associated with the default ValueDescriptor.)��If both suppressMissing and suppressZeros are true, then filter out all member tuples for which the cell values are either missing or zero for all combinations of members on the other edges.

Property OLAPCubeEdge::suppressZeros (Read/Write)

HRESULT suppressZeros(BOOL *retval);

Get/set a boolean value which indicates whether the query should filter out all member tuples for which the cell values are zero for all combinations of members on the other edges. (The cell values used are taken to be those associated with the default ValueDescriptor.)��If both suppressMissing and suppressZeros are true, then filter out all member tuples for which the cell values are either missing or zero for all combinations of members on the other edges.

Property OLAPCubeEdge::cube (Read Only)

HRESULT cube(IOLAPCube **retval);

Get the Cube of which the CubeEdge is an edge.

Property OLAPCubeEdge::nestedQueries (Read Only)

HRESULT nestedQueries(IOLAPMemberQueryCollection **retval);

Get the MemberQueries that collectively define the contents of the edge. This is an ordered list. The first MemberQuery defines the slowest varying set of members. The set of members returned by each subsequent MemberQuery will be nested under the tuples above it. Mathematically, the result set of the edge is equal to the cross-product of the result sets of the nested member queries (from which tuples may be suppressed if suppressMissing or suppressZeros is true).

Methods

HRESULT getDimensions (IOLAPDimensionCollection **retval);�HRESULT resultCount (long *retval);�HRESULT getCellIndex (IOLAPMemberCollection *reference, long *retval);�HRESULT getIndexMembers (long index, IOLAPMemberCollection **retval);�HRESULT getNestingOfDimension (IOLAPDimension *dimension, long *retval);

Method OLAPCubeEdge::getDimensions

HRESULT getDimensions(IOLAPDimensionCollection **retval);

Fetches the current list and order of dimensions along the cube edge. The first dimension in the array is the innermost dimension (the one "closest" to the data), while the last dimension is the outermost dimension.��Possible error codes include:�BUSY			The cube of which this is an edge is currently being validated asynchronously.�

Parameters

Dir		Type		Name		Description 		

[out, retval]	IOLAPDimensionCollection**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCubeEdge::resultCount

HRESULT resultCount(long *retval);

Returns the number of cells that may be found along this cube edge.��Possible error codes include:�NOT_VALIDATED	The cube has not been successfully validated, so no data access is possible.�BUSY			The cube of which this is an edge is currently being validated asynchronously.

Parameters

Dir		Type		Name		Description 		

[out, retval]	long*		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCubeEdge::getCellIndex

HRESULT getCellIndex(IOLAPMemberCollection *reference, long *retval);

Returns the zero-based cell index along the edge for the given combination of members.��Possible error codes include:�BUSY			The cube of which this is an edge is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The members given in the MemberCollection do not correspond to the dimensions on the edge.�NOT_VALIDATED	The cube has not been successfully validated, so no data access is possible.

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMemberCollection*		reference	Set of members, one from each dimension along edge

[out, retval]	long*		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCubeEdge::getIndexMembers

HRESULT getIndexMembers(long index, IOLAPMemberCollection **retval);

Returns a collection of members which map to the given zero-based cell index along the cube edge. ��Possible error codes include:��INVALID_INDEX 	index is either less than 0 or greater than the number of members returned by getExtent().�NOT_VALIDATED	The cube has not been successfully validated, so no data access is possible.�BUSY			The cube of which this is an edge is currently being validated asynchronously.��

Parameters

Dir		Type		Name		Description 		

[in]	long		index	Cell index along edge

[out, retval]	IOLAPMemberCollection**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPCubeEdge::getNestingOfDimension

HRESULT getNestingOfDimension(IOLAPDimension *dimension, long *retval);

Returns the nesting level of the given dimension on the edge.��Possible error codes include:�NOT_IN_COLLECTION		The dimension is not oriented on the edge

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPDimension*		dimension	The Dimension for which to find the nesting level.

[out, retval]	long*		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPDimension

interface IOLAPDimension : IOLAPMemberScope

A Dimension collects one or more members in hierarchies. A dimension is the top-level organization for members of a particular domain type, such as time, products, measures, geographical locations, etc.��The MDAPI recognizes two special types of dimensions in addition to a generic dimension: time and measures. A member of a measure dimension (modeled by Measure) has additional attributes. A member of a time dimension has no additional attributes, but will be of special interest to many applications.��Invariants:�(1) Dimension::members = the union of all Dimension::hierarchies.members.��

Properties

OLAPDimensionType dimensionType�IOLAPHierarchyCollection* hierarchies�IOLAPHierarchy* defaultHierarchy�IOLAPLevelCollection* levels�

Property OLAPDimension::dimensionType (Read Only)

HRESULT dimensionType(OLAPDimensionType *retval);

Get an enumeration value that describes the type of the dimension. Available types are:��TIME_DIMENSION�MEASURE_DIMENSION�OTHER_DIMENSION

Property OLAPDimension::hierarchies (Read Only)

HRESULT hierarchies(IOLAPHierarchyCollection **retval);

Get the hierarchies defined for the dimension. Each dimension will have one or more hierarchies.

Property OLAPDimension::defaultHierarchy (Read Only)

HRESULT defaultHierarchy(IOLAPHierarchy **retval);

Get the default hierarchy for the dimension, if there is any default defined. Otherwise, a null object.

Property OLAPDimension::levels (Read Only)

HRESULT levels(IOLAPLevelCollection **retval);

Get the levels defined for the dimension.

Methods

�Class OLAPDriver

interface IOLAPDriver : IDispatch

The Driver class represents a particular vendor's implementation of the MDAPI.

Properties

BSTR vendorName�BSTR driverProduct�BSTR driverVersion�BSTR driverName�IOLAPLanguage* language�IOLAPSchemaCollection* availableSchemata�IOLAPSession* session�

Property OLAPDriver::vendorName (Read Only)

HRESULT vendorName(BSTR *retval);

Get the name of the vendor that implemented the driver.

Property OLAPDriver::driverProduct (Read Only)

HRESULT driverProduct(BSTR *retval);

Get the name of the product of which the driver is a part.

Property OLAPDriver::driverVersion (Read Only)

HRESULT driverVersion(BSTR *retval);

Get the version of the driver. Format TBD.

Property OLAPDriver::driverName (Read Only)

HRESULT driverName(BSTR *retval);

Get the name of the driver. This name is unique over all implementations of the API.

Property OLAPDriver::language (Read Only)

HRESULT language(IOLAPLanguage **retval);

Get the default language for error messages produced in the domain of the Driver.

Property OLAPDriver::availableSchemata (Read Only)

HRESULT availableSchemata(IOLAPSchemaCollection **retval);

Get the schemata available through the driver. Note that the availableSchemata collection may be of indeterminate size.

Property OLAPDriver::session (Read Only)

HRESULT session(IOLAPSession **retval);

Get the instance of Session that manages all connections.

Methods

HRESULT openConnection (BSTR connectionString, BSTR authenticationString, IOLAPConnection **retval);�HRESULT getSchemataByName (BSTR schemaName, BOOL caseSensitive, IOLAPSchemaCollection **retval);

Method OLAPDriver::openConnection

HRESULT openConnection(BSTR connectionString, BSTR authenticationString, IOLAPConnection **retval);

Open a connection to a multi-dimensional schema.

Parameters

Dir		Type		Name		Description 		

[in]	BSTR		connectionString	A string that identifies the schema to the driver

[in]	BSTR		authenticationString	A string that provides authentication information about the user to the driver.

[out, retval]	IOLAPConnection**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPDriver::getSchemataByName

HRESULT getSchemataByName(BSTR schemaName, BOOL caseSensitive, IOLAPSchemaCollection **retval);

Returns a collection of Schema objects, given a schema name or a wildcard. The caseSensitive flag controls whether the search is case-sensitive.��Note that since multiple schemas may share the same wild-card pattern, this method returns a SchemaCollection object.

Parameters

Dir		Type		Name		Description 		

[in]	BSTR		schemaName	The name or wild-card pattern of the schema to search for.

[in]	BOOL		caseSensitive	A Boolean switch determining whether the search is case sensitive or not.

[out, retval]	IOLAPSchemaCollection**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPEdgeBuffer

interface IOLAPEdgeBuffer : IDispatch

An EdgeBuffer represents a buffer for one edge of a Buffer. There is an EdgeBuffer for each CubeEdge in the query.�

Properties

long extent�IOLAPEdgeLayerBufferCollection* edgeLayerBuffers�IOLAPCubeEdge* cubeEdge�

Property OLAPEdgeBuffer::extent (Read Only)

HRESULT extent(long *retval);

Get the number of cells along the buffer. This is the same as the extent of the fastest-varying edge layer buffer.

Property OLAPEdgeBuffer::edgeLayerBuffers (Read Only)

HRESULT edgeLayerBuffers(IOLAPEdgeLayerBufferCollection **retval);

Get an ordered collection of EdgeLayerBuffers, one for each dimension in the edge. The order mirrors the order of the collection of MemberQueries for the corresponding CubeEdge.

Property OLAPEdgeBuffer::cubeEdge (Read Only)

HRESULT cubeEdge(IOLAPCubeEdge **retval);

Get the cube edge that corresponds to the cube edge buffer

Methods

HRESULT next ();�HRESULT previous ();�HRESULT setIndex (long index);�HRESULT scroll (long cells);

Method OLAPEdgeBuffer::next

HRESULT next();

Advances the current position along the edge by one cell. This resets the currentCell attribute in the Buffer to a new data cell. It also resets the currentCell attribute in each of the EdgeLayerBuffers to a new edge cell.��If the current cell in the fastest-varying edge layer buffer is the last one, advancing the position 'wraps' by resetting the position to the first cell and advancing the current cell in the next slower-varying edge layer buffer. Similarly, if the current cell in that edge layer buffer is the last one, it, too, is set to the first cell and the next slower-varying edge layerbuffer is advanced. Note that if the query is asymmetric because of NA or zero-suppression, the set of cells represented by an edge layer buffer may vary across the cells of the slower-varying edge layer buffer. ��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.��BUFFER_AT_END		all layers are already at their last positions.�

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPEdgeBuffer::previous

HRESULT previous();

Backs up the current position along the edge by one cell. This resets the currentCell attribute in the Buffer to a new data cell. It also resets the currentCell attribute in each of the EdgeLayerBuffers to a new edge cell.��If the current cell in the fastest-varying edge layer buffer is the first one, backing up the position 'wraps' by resetting the position to the last cell and backing up the current cell in the next slower-varying edge layer buffer. Similarly, if the current cell in that edge layer buffer is the first one, it, too, is set to the last cell and the next slower-varying edge layer buffer is backed up. Note that if the query is asymmetric because of NA or zero-suppression, the set of cells represented by an edge layer buffer may vary across the cells of the slower-varying edge layer buffer. ��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.��BUFFER_AT_END		all layers are already at their first positions.�

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPEdgeBuffer::setIndex

HRESULT setIndex(long index);

Sets the current zero-based cell index for the edge. The current cell indices for the other edges are unaffected. This affects the current data cell for the buffer and the current edge cell for each of the layers on the edge. This method will be used primarily to get to the dimension members for an index in the edge.��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	long		index	The cell index in the edge

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPEdgeBuffer::scroll

HRESULT scroll(long cells);

Scrolls the buffer along the edge by the specified number of cells. This is a convenience function that is equivalent to destroying the current buffer and creating a new one with an offset range.��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.�

Parameters

Dir		Type		Name		Description 		

[in]	long		cells	the number of cells by which to scroll the buffer

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPEdgeLayerBuffer

interface IOLAPEdgeLayerBuffer : IDispatch

An EdgeLayerBuffer represents a buffer for one dimension in a buffer edge.

Properties

long extent�long propertiesCount�long valuesCount�IOLAPMemberQuery* memberQuery�IOLAPEdgeLayerCell* currentCell�

Property OLAPEdgeLayerBuffer::extent (Read Only)

HRESULT extent(long *retval);

Get the number of cells in the edge layer.

Property OLAPEdgeLayerBuffer::propertiesCount (Read Only)

HRESULT propertiesCount(long *retval);

Get the number of properties available for the edge cells of the edge layer buffer

Property OLAPEdgeLayerBuffer::valuesCount (Read Only)

HRESULT valuesCount(long *retval);

Get the number of values available for the edge cells of the edge layer buffer

Property OLAPEdgeLayerBuffer::memberQuery (Read Only)

HRESULT memberQuery(IOLAPMemberQuery **retval);

Get the member query that corresponds to the cube edge layer buffer

Property OLAPEdgeLayerBuffer::currentCell (Read Only)

HRESULT currentCell(IOLAPEdgeLayerCell **retval);

Get the current edge cell for the edge layer buffer. After creating a Buffer, the currentCell is set to the first edge cell in the layer. It is changed by calling EdgeBuffer::next and EdgeBuffer::previous.

Methods

HRESULT getEdgeLayerCells (long start, long end, IOLAPEdgeLayerCellCollection **retval);�HRESULT getCellsFloat (long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(float) *values);�HRESULT getCellsDouble (long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(double) *values);�HRESULT getCellsText (long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(BSTR) *values);�HRESULT getCellsLong (long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(long) *values);�HRESULT getCellsDate (long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(DATE) *values);�HRESULT getCellsBool (long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(BOOL) *values);

Method OLAPEdgeLayerBuffer::getEdgeLayerCells

HRESULT getEdgeLayerCells(long start, long end, IOLAPEdgeLayerCellCollection **retval);

Extracts a collection of EdgeLayerCells for the layer from the Buffer. The arguments are start and end indices into the cells that are logically contained by the edge layer buffer.��The collection is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and the order of the cells in the collection.��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	long		start	The index into the edge that marks the starting element of the cells to extract.

[in]	long		end	The index into the cells for the edge layer that marks the end of the cells to extract.

[out, retval]	IOLAPEdgeLayerCellCollection**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPEdgeLayerBuffer::getCellsFloat

HRESULT getCellsFloat(long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(float) *values);

Fills an array of single-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	long		start	The index into the edge that marks the starting element of the cells to extract.

[in]	long		end	The index into the cells for the edge layer that marks the end of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(float)*		values	The array of single-precision floating-point numbers to fill.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPEdgeLayerBuffer::getCellsDouble

HRESULT getCellsDouble(long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(double) *values);

Fills an array of double-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	long		start	an index into the cells for the edge layer that marks the start of the cells to extract

[in]	long		end	The index into the cells for the edge layer that marks the end of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(double)*		values	The array of double-precision floating-point numbers to fill.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPEdgeLayerBuffer::getCellsText

HRESULT getCellsText(long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(BSTR) *values);

Fills an array of strings representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	long		start	The index into the edge that marks the starting element of the cells to extract.

[in]	long		end	The index into the cells for the edge layer that marks the end of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(BSTR)*		values	The array of strings to fill.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPEdgeLayerBuffer::getCellsLong

HRESULT getCellsLong(long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(long) *values);

Fills an array of strings representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	long		start	The index into the edge that marks the starting element of the cells to extract.

[in]	long		end	The index into the cells for the edge layer that marks the end of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(long)*		values	The array of longs to fill.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPEdgeLayerBuffer::getCellsDate

HRESULT getCellsDate(long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(DATE) *values);

Fills an array of Dates representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	long		start	The index into the edge that marks the starting element of the cells to extract.

[in]	long		end	The index into the cells for the edge layer that marks the end of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(DATE)*		values	The array of dates to fill.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPEdgeLayerBuffer::getCellsBool

HRESULT getCellsBool(long start, long end, IOLAPValueDescriptor *valueType, SAFEARRAY(BOOL) *values);

Fills an array of booleans representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'boolean'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.

Parameters

Dir		Type		Name		Description 		

[in]	long		start	The index into the edge that marks the starting element of the cells to extract.

[in]	long		end	The index into the cells for the edge layer that marks the end of the cells to extract.

[in]	IOLAPValueDescriptor*		valueType	A ValueDescriptor that represents the value type to extract for each cell.

[in]	SAFEARRAY(BOOL)*		values	The array of booleans to fill.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPEdgeLayerCell

interface IOLAPEdgeLayerCell : IDispatch

An EdgeLayerCell represents a cell in an edge of a buffer. Logically, there is an EdgeLayerCell for each occurrence of each dimension member in the edge. The MDAPI does not represent the collection of EdgeLayerCells for an EdgeLayerBuffer, but instead relies on methods on EdgeLayerBuffer to obtain EdgeLayerCells. This allows implementations to efficiently represent these collections, which may be sparse.��A cell may contain values for more than one property. For instance, a cell may contain both a member name, used for saved reports, and a member caption, used for display, This is represented by an association with a number of OLAPAny objects, qualified by the Property.

Properties

long span�long offset�IOLAPMember* member�IOLAPCell* cell�

Property OLAPEdgeLayerCell::span (Read Only)

HRESULT span(long *retval);

Get the number of cells in the fastest-varying layer above which the edge cell is nested

Property OLAPEdgeLayerCell::offset (Read Only)

HRESULT offset(long *retval);

Get the offset into the cells in the fastest-varying layer above which the edge cell begins

Property OLAPEdgeLayerCell::member (Read Only)

HRESULT member(IOLAPMember **retval);

Get the dimension member that corresponds to the edge cell.

Property OLAPEdgeLayerCell::cell (Read Only)

HRESULT cell(IOLAPProperty *property, IOLAPCell **retval);

Get the cell that contains the values for the specified property

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPProperty*		property	

Methods

�Class OLAPHierarchy

interface IOLAPHierarchy : IOLAPMemberScope

A Hierarchy represents a collection of members of dimensions related in hierarchical fashion. Each Hierarchy contains one or more levels (represented by Level objects) which collect members sharing a common place within the hierarchy.��Invariants: �(1) Hierarchy::members is equal to the union of all Hierarchy::levels.members;�(2) For all distinct L1, L2 in Hierarchy::levels, L1.members does not intersect L2.members;�(3) For all distinct L1, L2 in Hierarchy::levels with L1 preceding L2 in the level ordering, there cannot exist members M1 in L1 and M2 in L2 such that M1 is a descendant of M2 in the hierarchy. (In other words, the arrangement of levels follows the topological ordering of the members in the hierarchy).

Properties

IOLAPLevelCollection* levels�

Property OLAPHierarchy::levels (Read Only)

HRESULT levels(IOLAPLevelCollection **retval);

Get the Levels for the hierarchy.

Methods

HRESULT relationQuery (OLAPMemberRelation relationship, IOLAPMember *member, IOLAPMemberQuery **retval);

Method OLAPHierarchy::relationQuery

HRESULT relationQuery(OLAPMemberRelation relationship, IOLAPMember *member, IOLAPMemberQuery **retval);

Return a new MemberQuery representing the specified set of relations of the Hierarchy instance.��aHierarchy.relationQuery(aRelationship, aMember)��is equivalent to��query = aMember.dimension.newQuery(NONE)�query.addRelations(aMember, aReleationship, aHierachy)��Possible error codes include:�WRONG_DIMENSIONALITY The hierarchy does not share the same dimension as the member.

Parameters

Dir		Type		Name		Description 		

[in]	OLAPMemberRelation		relationship	The MemberRelation defining the relationship between the given member and the set of members to be returned by the new query.

[in]	IOLAPMember*		member	The Member upon which the relationship is based.

[out, retval]	IOLAPMemberQuery**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPLanguage

interface IOLAPLanguage : IDispatch

Represents a language used to render error messages.

Properties

BSTR name�

Property OLAPLanguage::name (Read Only)

HRESULT name(BSTR *retval);

Get the name of the language. Format to be decided.

Methods

�Class OLAPLevel

interface IOLAPLevel : IOLAPMemberScope

A Level represents a level of a hierarchy and organizes members according to structural relations within the hierarchy.��

Properties

IOLAPDimension* dimension�

Property OLAPLevel::dimension (Read Only)

HRESULT dimension(IOLAPDimension **retval);

Get the dimension for which the level is defined.

Methods

�Class OLAPMeasure

interface IOLAPMeasure : IOLAPMember

A Measure is a subclass of Member that functions more as a type of variable.��Every cell in a cube result that is intersected with a measure will have the same data type, defined by the 'Type' attribute of the measure.��Each measure may be associated with a different set of other dimensions from other measures.��Invariants: �(1) Measure::dimension.dimensionType = MEASURE_DIMENSION;�(2) Measure::dimensions is a subset of connection.dimensions, where connection is the Connection in which the member is valid;�(3) Measure::dimensions cannot include the measures dimension.

Properties

long scale�long precision�OLAPDataType type�IOLAPDimensionCollection* dimensions�IOLAPValueType* valueType�

Property OLAPMeasure::scale (Read Only)

HRESULT scale(long *retval);

Get the power of 10 by which the number was adjusted before storing. For example, a value of 2 means that the measure has been multiplied by 100 prior to storing and should be divided by 100 to obtain the correct value. A value of 0 means that no scaling is required. �

Property OLAPMeasure::precision (Read Only)

HRESULT precision(long *retval);

Get the number of decimal places to display. Any display formatting performed should be performed after the number has been transformed by any applicable scale (see the Scale attribute above).�

Property OLAPMeasure::type (Read Only)

HRESULT type(OLAPDataType *retval);

Get the data type of ValueType contained in the Measure that corresponds to the default ValueDescriptor.�

Property OLAPMeasure::dimensions (Read Only)

HRESULT dimensions(IOLAPDimensionCollection **retval);

Get the dimensions that "dimension" (identify values for) this measure. Each Measure may have a different set of dimensions.

Property OLAPMeasure::valueType (Read Only)

HRESULT valueType(IOLAPValueDescriptor *descriptor, IOLAPValueType **retval);

Get the ValueType, if any, corresponding to the value descriptor.

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueDescriptor*		descriptor	The value descriptor categorizing the ValueType.

Methods

�Class OLAPMember

interface IOLAPMember : IDispatch

A Member represents a member of a dimension. Members and combinations of members from different dimensions identify values for properties and cells in a cube.�

Properties

BSTR name�IOLAPDimension* dimension�

Property OLAPMember::name (Read Only)

HRESULT name(BSTR *retval);

Get the name for the measure.��Invariant:�(1) Measure.name must equal the value obtained from nameProperty.getValue(Member), where nameProperty is the "name" Property obtained from the appropriate Connection.

Property OLAPMember::dimension (Read Only)

HRESULT dimension(IOLAPDimension **retval);

Get the unique instance of Dimension that contains the Member instance.

Methods

�Class OLAPMemberQuery

interface IOLAPMemberQuery : IOLAPMemberScope

The MemberQuery type represents a set of Members (a MemberScope) that is determined by query. Its interface is designed to allow for continuous modification by the client. The implementation is free to choose any internal representation of the query.��MemberQuery instances are created in three ways:��(1) When a Cube is created, one MemberQuery will be placed on an edge for each dimension.�(2) As part of the creation of more exotic Cubes. The methods addAllFrom(), removeAllFrom(), and keepAllFrom() take MemberScopes (including other MemberQueries) as parameters. While may queries can be constructed without these methods, some cannot. The method MemberScope::newQuery() thus allows more complicated queries.�(3) As a mechanism to retrieve metadata. By creating a MemberQuery, the client is able to make complex metadata queries. See also the method relationQuery() on Hierarchy.

Properties

IOLAPParameterHolderCollection* parameters�IOLAPValueDescriptorCollection* descriptors�

Property OLAPMemberQuery::parameters (Read Only)

HRESULT parameters(IOLAPParameterHolderCollection **retval);

Get the ParameterHolders that have been created for the MemberQuery instance. All (named) parameters used by any ValueExpressions for the query will be included.

Property OLAPMemberQuery::descriptors (Read Only)

HRESULT descriptors(IOLAPValueDescriptorCollection **retval);

Get the ValueDescriptors specifying the values to be returned for the requested properties. By default this set is initialized to contain the distinguished instance Connection:: defaultDescriptor.

Methods

HRESULT keep (IOLAPValueExpression *expression);�HRESULT add (IOLAPValueExpression *expression);�HRESULT remove (IOLAPValueExpression *expression);�HRESULT removeMember (IOLAPMember *member);�HRESULT addMember (IOLAPMember *member);�HRESULT addAllFrom (IOLAPMemberScope *scope);�HRESULT removeAllFrom (IOLAPMemberScope *scope);�HRESULT keepAllFrom (IOLAPMemberScope *scope);�HRESULT addRelations (IOLAPMember *member, OLAPMemberRelation relationship, IOLAPHierarchy *hierarchy);�HRESULT removeRelations (IOLAPMember *member, OLAPMemberRelation relationship, IOLAPHierarchy *hierarchy);�HRESULT addGeneration (IOLAPHierarchy *hierarchy, OLAPHierarchyDirection direction, long distance);�HRESULT keepRelations (IOLAPMember *member, OLAPMemberRelation relationship, IOLAPHierarchy *hierarchy);�HRESULT sortByValue (IOLAPValueExpression *basedOn, OLAPSortOrder order);�HRESULT sortByHierarchy (IOLAPHierarchy *hierarchy, OLAPSortOrder order);�HRESULT sortByLevel (IOLAPHierarchy *hierarchy, OLAPSortOrder order);�HRESULT resetNaturalSortOrder ();�HRESULT resort ();�HRESULT selectAll ();�HRESULT selectNone ();�HRESULT newPropertyValueExpression (IOLAPProperty *property, IOLAPValueDescriptor *descriptor, IOLAPValueExpression **retval);�HRESULT newCellValueExpression (IOLAPMemberCollection *context, IOLAPValueDescriptor *descriptor, IOLAPValueExpression **retval);�HRESULT newParameter (BSTR name, OLAPDataType dataType, VARIANT value, IOLAPParameterHolder **retval);�HRESULT clone (IOLAPMemberQuery **retval);�HRESULT validate ();�HRESULT validateAsync (IOLAPProgressMonitor **retval);�HRESULT resultCount (long *retval);�HRESULT getParameterByName (BSTR name, IOLAPParameterHolder **retval);�HRESULT addDescriptor (IOLAPValueDescriptor *descriptor);�HRESULT removeDescriptor (IOLAPValueDescriptor *descriptor);�HRESULT addProperty (IOLAPProperty *property);�HRESULT removeProperty (IOLAPProperty *property);�HRESULT newBuffer (long start, long end, IOLAPEdgeLayerBuffer **retval);�HRESULT select (IOLAPValueExpression *expression);�HRESULT selectAllFrom (IOLAPMemberScope *scope);�HRESULT selectRelations (IOLAPMember *member, OLAPMemberRelation relationship, IOLAPHierarchy *hierarchy);�HRESULT selectGeneration (IOLAPHierarchy *hierarchy, OLAPHierarchyDirection direction, long distance);�HRESULT getStatus (OLAPQueryStatus *retval);�HRESULT addMembers (IOLAPMemberCollection *members);

Method OLAPMemberQuery::keep

HRESULT keep(IOLAPValueExpression *expression);

Filter the current set of Members to include only those for whom the ValueExpression is true.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.��

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		expression	A Boolean-valued instance of ValueExpression to be used as a predicate.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) expression.query = self�(2) expression.dataType = BOOLEAN

Post Conditions

(1) The new return set is equal to the set of all members of the old return set for which the value of expression is true.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::add

HRESULT add(IOLAPValueExpression *expression);

Add all members from the dimension for which the ValueExpression is true to the current set of members. The new members are appended to the result set.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		expression	A Boolean-valued instance of ValueExpression to be used as a predicate.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) expression.query = self�(2) expression.dataType = BOOLEAN

Post Conditions

(1) The new return set is equal to the old return set unioned with the set of all members of query.dimension for which the value of expression is true.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::remove

HRESULT remove(IOLAPValueExpression *expression);

Filter the current set of Members to include only those for whom the ValueExpression is false.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		expression	A Boolean-valued instance of ValueExpression to be used as a predicate.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) expression.query = self�(2) expression.dataType = BOOLEAN�

Post Conditions

(1) The new return set is equal to the set of all members of the old return set for which the value of expression is false;�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::removeMember

HRESULT removeMember(IOLAPMember *member);

Remove a particular Member from the MemberQuery instance's result set.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The member does not belong to the same dimension as the query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMember*		member	The instance of Member to be explicitly removed from the MemberQuery instance's result set.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) member.dimension = self.dimension

Post Conditions

(1) The new return set is equal to the old return set minus the given member;�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::addMember

HRESULT addMember(IOLAPMember *member);

Add a particular Member to the MemberQuery instance's result set. The new member is appended to the result set.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The member does not belong to the same dimension as the query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMember*		member	The instance of Member to be explicitly added to the MemberQuery instance's result set.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) member.dimension = self.dimension

Post Conditions

(1) The new return set is equal to the old return set plus the given member;�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::addAllFrom

HRESULT addAllFrom(IOLAPMemberScope *scope);

Add all members defined by 'scope' to the return set of the MemberQuery instance. The new members are appended to the result set.��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as the parameter has different dimensionality than the MemberQuery instance.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMemberScope*		scope	The MemberScope whose members are to be added to the MemberQuery instance's result set.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) scope.dimension = self.dimension

Post Conditions

(1) The new return set is equal to the old return set unioned with the return set of the parameter scope;�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::removeAllFrom

HRESULT removeAllFrom(IOLAPMemberScope *scope);

Remove all members defined by 'scope' from the return set of the MemberQuery instance.��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as parameter has different dimensionality than the MemberQuery instance.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMemberScope*		scope	The MemberScope whose members are to be removed from the MemberQuery instance's result set.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) scope.dimension = self.dimension

Post Conditions

(1) The new return set is equal to the old return set minus the return set of the parameter scope.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::keepAllFrom

HRESULT keepAllFrom(IOLAPMemberScope *scope);

Keep only those members contained in 'scope' from the return set of the MemberQuery instance.��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as parameter has different dimensionality than the MemberQuery instance.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMemberScope*		scope	The MemberScope whose members are to be kept in the MemberQuery instance's result set.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) scope.dimension = self.dimension

Post Conditions

(1) The new return set is equal to the old return set intersected with the return set of the parameter scope.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::addRelations

HRESULT addRelations(IOLAPMember *member, OLAPMemberRelation relationship, IOLAPHierarchy *hierarchy);

Add all the relations of 'member' in 'hierarchy' defined by 'relationship' to the return set of the MemberQuery instance. The new members are inserted into the result set, immediately following 'member'.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension than the one the MemberQuery instance is querying over.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMember*		member	The instance of Member whose relations are to be added to the Member Query instance's result set.

[in]	OLAPMemberRelation		relationship	The MemberRelation defining the relationship between the given member and the set of members to be added.

[in]	IOLAPHierarchy*		hierarchy	The instance of Hierarchy defining the relationships.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) member.dimension = self.dimension;�(2) hierarchy.dimension = self.dimension

Post Conditions

(1) The new return set will be equal to the old return set unioned with all relations of member in hierarchy.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::removeRelations

HRESULT removeRelations(IOLAPMember *member, OLAPMemberRelation relationship, IOLAPHierarchy *hierarchy);

Remove all the relations of 'member' in 'hierarchy' defined by 'relationship' from the return set of the MemberQuery instance.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension than the one the MemberQuery instance is querying over.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMember*		member	The instance of Member whose relations are to be removed from the MemberQuery instance's result set.

[in]	OLAPMemberRelation		relationship	The MemberRelation defining the relationship between the given member and the set of members to be removed.

[in]	IOLAPHierarchy*		hierarchy	The instance of Hierarchy defining the relationships.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) member.dimension = self.dimension�(2) hierarchy.dimension = self.dimension

Post Conditions

(1) The new return set will be equal to the old return set minus all relations of member in hierarchy.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::addGeneration

HRESULT addGeneration(IOLAPHierarchy *hierarchy, OLAPHierarchyDirection direction, long distance);

Adds the collection of members that exist at the specified position in the hierarchy. The new members are appended to the result set.��If the direction is HEIGHT, then the collection is of members at 'distance' units from the leaf level. �If the direction is DEPTH, then the collection is of members at 'distance' units from the root level.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension to the one the MemberQuery instance is querying over.�INVALID_INDEX		The supplied distance parameter is invalid.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPHierarchy*		hierarchy	The instance of Hierarchy defining the generations.

[in]	OLAPHierarchyDirection		direction	A HierarchyDirection representing the direction in which to count generations.

[in]	long		distance	The number of the generation. The first generation is number zero.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) hierarchy.dimension = self.dimension;�(2) distance >=0.

Post Conditions

(1) The new result set will be the union of the old result set with the set of all members of self.dimension in the specified generation of the given hierarchy.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::keepRelations

HRESULT keepRelations(IOLAPMember *member, OLAPMemberRelation relationship, IOLAPHierarchy *hierarchy);

Remove all members currently returned by the MemberQuery instance except the relations of 'member' in 'hierarchy' defined by 'relationship'.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension to the one the MemberQuery instance is querying over.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMember*		member	The instance of Member whose relations are to be kept in the MemberQuery instance's result set.

[in]	OLAPMemberRelation		relationship	The MemberRelation defining the relationship between the given member and the set of members to be kept.

[in]	IOLAPHierarchy*		hierarchy	The instance of Hierarchy defining the relationships.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) member.dimension = self.dimension�(2) hierarchy.dimension = self.dimension

Post Conditions

(1) The new return set will be equal to the old return set intersected with all relations of member in hierarchy.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::sortByValue

HRESULT sortByValue(IOLAPValueExpression *basedOn, OLAPSortOrder order);

Sort the result set by the specified value, preserving any previous sorting where the new sort order does not distinguish between Members��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have a valid data type.�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		basedOn	A ValueExpression representing the value the sort is to performed on.

[in]	OLAPSortOrder		order	The SortOrder indicating the sort direction.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) basedOn.query = self

Post Conditions

(1) The new result set will contain the same members as the old result set, but will be sorted according to the following rule: � (a) The result set is partitioned by putting all members whose value for "basedOn" into the same group.� (b) Within each of these groups the old ordering applies.� (c) The groups are ordered according to the natural ordering of the value associated to each group, either in ascending or descending order according to the value of the "order" parameter.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::sortByHierarchy

HRESULT sortByHierarchy(IOLAPHierarchy *hierarchy, OLAPSortOrder order);

Sort the result set topologically by the specified hierarchy, preserving any previous sorting where the new sort order does not distinguish between Members��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension to the one the MemberQuery instance is querying over.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPHierarchy*		hierarchy	The Hierarchy over which the dimension is to be sorted.

[in]	OLAPSortOrder		order	The SortOrder indicating the sort direction.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) hierarchy.dimension=self.dimension

Post Conditions

(1) The new result set will contain the same members as the old result set, but will be sorted according to the following rule: �(a) The result set is partitioned by putting all members sharing the same parent (with respect to the given hierarchy) into the same group.�(b) Within each of these groups the old ordering applies.�(c) If the value of "order" is DESCENDING, then the members are arranged so that every member occurs before all of its descendants, but after both the previous member of its group and all of the previous member's descendants.�(c) If the value of "order" is ASCENDING, then the members are arranged so that every member occurs after all of its descendants, but before both the previous member of its group and all of the previous member's descendants.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::sortByLevel

HRESULT sortByLevel(IOLAPHierarchy *hierarchy, OLAPSortOrder order);

Sort the result set by levels of the specified hierarchy, preserving any previous sorting where the new sort order does not distinguish between Members.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension than the one the MemberQuery instance is querying over.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPHierarchy*		hierarchy	The Hierarchy over which the dimension is to be sorted.

[in]	OLAPSortOrder		order	The SortOrder indicating the sort direction.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) hierarchy.dimension=self.dimension

Post Conditions

(1) The new result set will contain the same members as the old result set, but will be sorted according to the following rule: �(a) The result set is partitioned by putting all members into groups sharing the same level.�(b) Within each of these groups the old ordering applies.�(c) The groups are ordered according to order of the levels, depending on the value of the order parameter.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::resetNaturalSortOrder

HRESULT resetNaturalSortOrder();

Remove all sort criteria from the query and restore the 'natural' sort order of the selection.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns

HRESULT

Possible Errors

OLAPException

Post Conditions

(1) The new result set will be identical to the old, but the members will be presented in the "natural database ordering".�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::resort

HRESULT resort();

Resort the collection by applying, in the order that they were first applied, all previous sort commands issued since either the query was first created or since the resetNaturalSortOrder() method was invoked.��Example:��Imagine we start with the set of members NY, MA, CA, WI.�(1) If we sort alphabetically by name, the result set will become CA, MA, NY, WI�(2) If we then drill down on NY, the result set becomes CA, MA, NY, 'Albany', 'Buffalo', 'New York', WI�(3) If we invoke the resort() method, the result set becomes 'Albany', 'Buffalo', CA, MA, 'New York', NY, WI��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns

HRESULT

Possible Errors

OLAPException

Post Conditions

(1) The new result set will be identical to the old, but the members will be sorted according to the sort criteria already applied to the query.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::selectAll

HRESULT selectAll();

Sets the query to select all Members from the Dimension and clears all sorting criteria. This is equivalent to self.addAllFrom(self.dimension) followed by self.resetNaturalSortOrder().��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns

HRESULT

Possible Errors

OLAPException

Post Conditions

(1) The new result set will contain all members of the dimension.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::selectNone

HRESULT selectNone();

Sets the query to select no Members from the Dimension and clears all sorting criteria.�This is equivalent to self.removeAllFrom(self.dimension) followed by self.resetNaturalSortOrder().��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns

HRESULT

Possible Errors

OLAPException

Post Conditions

(1) The new result set will be empty, and all previous sort criteria will be forgotten.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::newPropertyValueExpression

HRESULT newPropertyValueExpression(IOLAPProperty *property, IOLAPValueDescriptor *descriptor, IOLAPValueExpression **retval);

Return an instance of ValueExpression representing the value of a property.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�INVALID_PROPERTY		The Property passed as parameter is not valid for the dimension of the query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPProperty*		property	An instance of Property whose values are of interest.

[in]	IOLAPValueDescriptor*		descriptor	A ValueDescriptor specifying which value is to be obtained from the property.

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) property is a valid Property for self.dimension or one of its subsets(Hierarchies and Levels);�(2) property.valueType(descriptor) exists.

Post Conditions

Denote the MemberQuery instance as self, the returned instance of ValueExpression as newValueExpression, and the value of newValueExpression for a given member as newValueExpression(member).��(1) newValueExpression.dataType = property.valueType(descriptor).dataType;�(2) newValueExpression.dimension = self.dimension;�(2) newValueExpression(member) = property.getValue(member, descriptor) if member is valid for the property, return a missing value otherwise.

Method OLAPMemberQuery::newCellValueExpression

HRESULT newCellValueExpression(IOLAPMemberCollection *context, IOLAPValueDescriptor *descriptor, IOLAPValueExpression **retval);

Return an instance of ValueExpression representing the value of a cell.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The supplied MemberCollection does not correctly qualify all dimensions other than the dimension of the MemberQuery instance.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMemberCollection*		context	The MemberCollection used to qualify the reference. The collection must include a Member for every dimension except the one over which the query is performed.

[in]	IOLAPValueDescriptor*		descriptor	A ValueDescriptor specifying which value is to be obtained from the cell.

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.dimension is not the measures dimension;�(2) The context must contain one Member from each of the dimensions other than self.dimension - one of these must be an instance of Measure;�(3) If 'measure' denotes the instance of Measure contained in context, then measure.valueType(descriptor) exists.

Post Conditions

Denote the MemberQuery instance as self, the returned instance of ValueExpression as newValueExpression, and the value of newValueExpression for a given member as newValueExpression(member).��(1) newValueExpression.dataType = measure.valueType(descriptor).dataType;�(2) newValueExpression.dimension = self.dimension;�(2) The value of newValueExpression(member) is equal to the cell value for the combination of members specified by context together with the given member.

Method OLAPMemberQuery::newParameter

HRESULT newParameter(BSTR name, OLAPDataType dataType, VARIANT value, IOLAPParameterHolder **retval);

Return a new instance of ParameterHolder.��Possible error codes include:��NAME_IN_USE The given name is already taken.

Parameters

Dir		Type		Name		Description 		

[in]	BSTR		name	The name of the parameter, if any. If the name is given, then it must be unique within the scope of the member query.

[in]	OLAPDataType		dataType	The data type of the value in the ParameterHolder. While the value of the parameter may change after creation, the data type remains constant.

[in]	VARIANT		value	The initial/default value of the parameter.

[out, retval]	IOLAPParameterHolder**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) The type of value matched the given dataType;�(2) There is not already a parameter with the same name for the MemberQuery instance.

Post Conditions

(1) If the name is not the empty string, then the ParameterHolder will be added to the parameters collection of the MemberQuery instance.�(2) The new instance of ParameterHolder will be initialized to the given type, name, and value.

Method OLAPMemberQuery::clone

HRESULT clone(IOLAPMemberQuery **retval);

Create a complete copy of the query definition. Specifically, this method will create a new instance of MemberQuery mirroring the definition of the original together with copies of all attached ValueExpression instances. No metadata class will be copied. (So, for example, both the original and the copy will point to the same instance of Dimension.)��The new instance of MemberQuery will begin in an invalidated state even if the original had been validated. It can be modified like any other member query, and its state is independent of the original.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Parameters

Dir		Type		Name		Description 		

[out, retval]	IOLAPMemberQuery**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Post Conditions

(1) newMemberQuery.getStatus = INITIAL

Method OLAPMemberQuery::validate

HRESULT validate();

Performs validation of query's definition, which will enable querying of member and property information from query if successful. To the degree that a vendor's implementation of this function also performs a query and fetches data, it is a synchronous operation.��The method will raise an exception if the MemberQuery instance is part of a larger query (such as a cube).��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.getStatus < > .VALIDATING

Post Conditions

(1) self.getStatus = VALIDATED

Method OLAPMemberQuery::validateAsync

HRESULT validateAsync(IOLAPProgressMonitor **retval);

This operation has the same effect as the validate() method, but is performed asynchronously. Control returns immediately to the caller while the cube validation occurs in the background. The method returns an instance of ProgressMonitor, which allows the client to monitor progress of the asynchronous operation. The member query will not be usable until the validation has concluded.��The method will raise an exception if the MemberQuery instance is part of a larger query (such as a cube).��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Parameters

Dir		Type		Name		Description 		

[out, retval]	IOLAPProgressMonitor**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.getStatus <> VALIDATING

Post Conditions

(1) self.getStatus = VALIDATING.�(2) Once the asynchronous operation has completed, the post conditions of the validate() method apply.

Method OLAPMemberQuery::resultCount

HRESULT resultCount(long *retval);

Returns the number of members in the query. This may only be called after a successful validation of the query.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�NOT_VALIDATED		The query has not yet been validated, so no data is available.�

Parameters

Dir		Type		Name		Description 		

[out, retval]	long*		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.getStatus = VALIDATED or self.getStatus = MODIFIED

Method OLAPMemberQuery::getParameterByName

HRESULT getParameterByName(BSTR name, IOLAPParameterHolder **retval);

Return the named parameter, if such exists. Raise an exception otherwise.��Possible error codes include:�BUSY			The query is currently being validated asynchronously.�NOT_FOUND		The parameter has not been found.

Parameters

Dir		Type		Name		Description 		

[in]	BSTR		name	The name of the query parameter.

[out, retval]	IOLAPParameterHolder**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPMemberQuery::addDescriptor

HRESULT addDescriptor(IOLAPValueDescriptor *descriptor);

Add an instance of ValueDescriptor to the collection contained by the MemberQuery instance. The set of ValueDescriptors attached to the MemberQuery is part of the query definition. Each property of the members can have multiple values. For example, each property may have, in addition to the basic value, a formatted value, a background color, and a foreground color. Each kind of value present in the cell is represented by an instance of ValueDescriptor. (So, in the example above, there would be four instances, named "value", "formatted value", "background color", and "foreground color".) The only values that will be fetched by the query are those in the descriptors set attached to the member query. When the member query is first created it will contain only the default ValueDescriptor (the one named "value" above). If the client needs the additional property values, it must explicitly add the appropriate instances of ValueDescriptor to the query by calling this method. ��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueDescriptor*		descriptor	The instance of ValueDescriptor to be added.

Returns

HRESULT

Possible Errors

OLAPException

Post Conditions

(1) descriptor will be in the set self.descriptors.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::removeDescriptor

HRESULT removeDescriptor(IOLAPValueDescriptor *descriptor);

Remove an instance of ValueDescriptor from the collection contained by the MemberQuery instance.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueDescriptor*		descriptor	The instance of ValueDescriptor to be removed.

Returns

HRESULT

Possible Errors

OLAPException

Post Conditions

(1) descriptor will not be in the set self.descriptors.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::addProperty

HRESULT addProperty(IOLAPProperty *property);

Add an instance of Property to the collection contained by the MemberQuery instance. The set of Properties attached to the MemberQuery is part of the query definition. The only properties whose values will be fetched by the query are those in the property set attached to the cube. When the member query is first created it will contain only the default Property (the one named "name"). If the client needs to fetch the values of any additional properties, it must explicitly add the appropriate instances of Property to the query by calling this method.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�INVALID_PROPERTY		The Property passed as parameter is not valid for the dimension of the query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPProperty*		property	The Property to be added.

Returns

HRESULT

Possible Errors

OLAPException

Post Conditions

(1) property will be in the set self.properties.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::removeProperty

HRESULT removeProperty(IOLAPProperty *property);

Remove a Property from the MemberQuery instance's collection. Values for this property will no longer be fetched by the query.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�INVALID_PROPERTY		The Property passed as parameter is associated with the query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPProperty*		property	The Property to be removed.

Returns

HRESULT

Possible Errors

OLAPException

Post Conditions

(1) property will not be in the set self.properties.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::newBuffer

HRESULT newBuffer(long start, long end, IOLAPEdgeLayerBuffer **retval);

Create a new edge layer buffer for the member query, specifying start and end indices in the set of members represented by the query.��Possible error codes include:��INVALID_INDICES		An end index is smaller than the corresponding start index�BUSY			The query is currently being validated asynchronously.�NOT_VALIDATED		The query has not yet been validated, so no data is available.�

Parameters

Dir		Type		Name		Description 		

[in]	long		start	the start index in the set of members represented by the query

[in]	long		end	the end index in the set of members represented by the query

[out, retval]	IOLAPEdgeLayerBuffer**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.getStatus = VALIDATED

Method OLAPMemberQuery::select

HRESULT select(IOLAPValueExpression *expression);

Select only those members from the dimension for which the ValueExpression is true, regardless of the current selection. (This operation effectively restarts the selection process.)��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		expression	A Boolean-valued instance of ValueExpression to be used as a predicate.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) expression.query = self�(2) expression.dataType = BOOLEAN

Post Conditions

(1) The new set is defined to be the set of all members in self.dimension for which the value of expression is true.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::selectAllFrom

HRESULT selectAllFrom(IOLAPMemberScope *scope);

Select only those members defined by 'scope', regardless of the current selection. (This operation effectively restarts the selection process.)��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as the "scope" parameter and the MemberQuery instance have different dimensionality.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMemberScope*		scope	The MemberScope whose members are to be selected.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) scope.dimension = self.dimension

Post Conditions

(1) The new return set is defined to be the return set of the parameter 'scope'.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::selectRelations

HRESULT selectRelations(IOLAPMember *member, OLAPMemberRelation relationship, IOLAPHierarchy *hierarchy);

Select only the relations of 'member' in 'hierarchy' defined by 'relationship', regardless of the current selection. (This operation effectively restarts the selection process.)��Possible error codes include: �BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension to the one the MemberQuery instance is querying over.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMember*		member	The instance of Member whose relations are to be selected.

[in]	OLAPMemberRelation		relationship	The MemberRelation defining the relationship between the given member and the set of members to be selected.

[in]	IOLAPHierarchy*		hierarchy	The instance of Hierarchy defining the relationships.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) member.dimension = self.dimension;�(2) hierarchy.dimension = self.dimension

Post Conditions

(1) The new return set will be equal to set of all members of the self.dimension related to the given member in the given hierarchy as specified by the given relation.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::selectGeneration

HRESULT selectGeneration(IOLAPHierarchy *hierarchy, OLAPHierarchyDirection direction, long distance);

Selects only the collection of members that exist at the specified position in the hierarchy, regardless of the current selection. (This operation effectively restarts the selection process.)��If the direction is HEIGHT, then the collection is of members at 'distance' units from the leaf level. �If the direction is DEPTH, then the collection is of members at 'distance' units from the root level.��Possible error codes include:��BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension to the one the MemberQuery instance is querying over.�INVALID_INDEX		The supplied distance parameter is invalid.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPHierarchy*		hierarchy	The instance of Hierarchy defining the generations.

[in]	OLAPHierarchyDirection		direction	A HierarchyDirection representing the direction in which to count generations.

[in]	long		distance	The number of the generation. The first generation is number zero.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) hierarchy.dimension = self.dimension;�(2) distance >=0.

Post Conditions

(1) The new result set will be the set of all members of self.dimension in the specified generation of the given hierarchy.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method OLAPMemberQuery::getStatus

HRESULT getStatus(OLAPQueryStatus *retval);

Return the current status of the query.

Parameters

Dir		Type		Name		Description 		

[out, retval]	OLAPQueryStatus*		retval	Method return value.

Returns

HRESULT

Method OLAPMemberQuery::addMembers

HRESULT addMembers(IOLAPMemberCollection *members);

Add the Members in the given collection to the MemberQuery instance's result set. Members already in the result set are skipped, and the remaining members are appended to any members already in the result set, retaining their order.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The members do not all belong to the same dimension as the query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMemberCollection*		members	An array of Members to add to the result set of the MemberQuery instance.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPMemberScope

interface IOLAPMemberScope : IOLAPPropertyScope

A MemberScope is an abstract type representing a set of Members. MemberScopes come in two basic varieties: fixed scopes, such as Dimension and Level, represent fixed sets of members; the other kind of scope is MemberQuery, which represents a set of members defined by a query. The set of members returned by a fixed query will stay the same between queries provided no database updates occur; the set of members returned by MemberQuery, on the other hand, may depend on such factors as time of day.��Despite these differences, all MemberScopes have one thing in common: all the instances of Member contained in a single MemberScope must belong to the same Dimension. In particular, each MemberScope is a subset of some Dimension.��The instances of Member contained in the fixed MemberScopes cannot be directly accessed by the kinds of operations found on collection classes. Instead the client must create an instance of MemberQuery to specify the precise set of members required, and must then use the buffer classes to extract the members.

Properties

BSTR name�IOLAPDimension* dimension�

Property OLAPMemberScope::name (Read Only)

HRESULT name(BSTR *retval);

Get the name of the metadata object. Names may be stored in the MD schema or artificially generated, depending on the server and interface implementation.�

Property OLAPMemberScope::dimension (Read Only)

HRESULT dimension(IOLAPDimension **retval);

Get the instance of Dimension of which the MemberScope instance is a subset.

Methods

HRESULT newQuery (BSTR name, OLAPInitialSelection initialSelection, IOLAPMemberQuery **retval);

Method OLAPMemberScope::newQuery

HRESULT newQuery(BSTR name, OLAPInitialSelection initialSelection, IOLAPMemberQuery **retval);

Create a new MemberQuery based on the dimension of the MemberScope instance.

Parameters

Dir		Type		Name		Description 		

[in]	BSTR		name	The name of the new instance of MemberQuery. The name has no semantic meaning, and is not required to be unique.

[in]	OLAPInitialSelection		initialSelection	If ALL, the query initially contains all of the members of the MemberScope instance. If NONE, the query is initially empty.

[out, retval]	IOLAPMemberQuery**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPMessage

interface IOLAPMessage : IDispatch

Status message event send from the implementation or server side of the API.�

Properties

BSTR message�OLAPErrorCode errorCode�long nativeCode�OLAPSeverityCode severity�

Property OLAPMessage::message (Read Only)

HRESULT message(BSTR *retval);

Get a textual message that describes the status event.�

Property OLAPMessage::errorCode (Read Only)

HRESULT errorCode(OLAPErrorCode *retval);

Get the MDAPI-related error code.�

Property OLAPMessage::nativeCode (Read Only)

HRESULT nativeCode(long *retval);

Get a native status code (code meaningful to implementation of API, to server, or to operating system).

Property OLAPMessage::severity (Read Only)

HRESULT severity(OLAPSeverityCode *retval);

Get an indication of the severity of the error.

Methods

�Class OLAPException

interface IOLAPException : IDispatch

A collection of Message objects returned from an MDAPI object method.

Properties

long maximumSeverity�IOLAPMessageCollection* messages�

Property OLAPException::maximumSeverity (Read Only)

HRESULT maximumSeverity(long *retval);

Get the highest severity rating of all the messages contained in the exception.

Property OLAPException::messages (Read Only)

HRESULT messages(IOLAPMessageCollection **retval);

Get the Messages generated by the exception.

Methods

�Class OLAPParameterHolder

interface IOLAPParameterHolder : IOLAPValueExpression

Represents a value to be used in expressions. ��The data type of the ParameterHolder must be fixed at creation time, but the value itself may be changed at any time by the client.��Note that changing the value in the ParameterHolder will require any query whose definition depends on it to be revalidated.

Properties

VARIANT value�BSTR name�

Property OLAPParameterHolder::value (Read/Write)

HRESULT value(VARIANT *retval);

Get/set the current value of the query parameter. Text values may include wild-card patterns.

Property OLAPParameterHolder::name (Read Only)

HRESULT name(BSTR *retval);

Get the name to be used to identify the parameter of the member query. If the parameter holder is given a non-empty name, then it will be registered in the collection of the parameter collection of the MemberQuery that created it. The name must be unique within the scope of the query. When a query is copied using the deepCopy() method, the attached parameter holders are also copied; those that were named in the original query will be accessible in the copy.

Methods

�Class OLAPProgressMonitor

interface IOLAPProgressMonitor : IDispatch

Instances of ProgressMonitor are returned from potentially long-running operations, such as Cube::validateAsync(). The calling thread may do one of three things: �(1) poll the ProgressMonitor for completion using the getStatus() method;�(2) attempt to cancel the operation using cancel();�(3) become blocked until the operation is completed by calling the wait() method.��A typical UI scenario is:�(a) invoke the validateAsync operation and receive an instance of ProgressMonitor;�(b) open a dialog containing a cancel button; �(c) call the wait() method, which blocks the thread.��Two things can then occur:�(d1) the validate operation completes and the blocked thread is released.�(d2) a separate UI thread allows the user to push the cancel button. This invokes the cancel() operation, which attempts to cancel the query, sets the status to cancel, and releases the blocked thread by raising an exception.��(e) The newly released thread then closes the dialog.

Properties

IOLAPMessageCollection* messages�

Property OLAPProgressMonitor::messages (Read Only)

HRESULT messages(IOLAPMessageCollection **retval);

Get the Messages generated by the error. The collection is empty unless the status is OPRTATION_ERROR.

Methods

HRESULT cancel ();�HRESULT wait ();�HRESULT getStatus (OLAPProgressStatus *retval);

Method OLAPProgressMonitor::cancel

HRESULT cancel();

Attempt to cancel the ongoing operation, set the status to CANCELED, and release any threads blocked by the wait() method on the ProgressMonitor instance by raising an exception.��Possible error codes include:�OPERATION_CANCELED		The asynchronous operation has already been canceled.�OPERATION_COMPLETED		The asynchronous operation has already competed.�

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPProgressMonitor::wait

HRESULT wait();

Block the calling thread until the operation is complete or canceled. In the latter case, an exception is raised. If any error occurs during execution of the long operation (such as a network error), an exception is raised and the thread released.��Possible error codes include:�OPERATION_CANCELED		The asynchronous operation has already been canceled.�ASYNCHRONOUS_ERROR	An error occurred during the execution of the asynchronous operation. Specific error information can be obtaining from the getMessages() method.�

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPProgressMonitor::getStatus

HRESULT getStatus(OLAPProgressStatus *retval);

Return OPERATION_COMPLETED if the long-running operation is complete, OPERATION_IN_PROGRESS if it is in progress, or OPERATION_CANCELED if it has been canceled. Returns OPERATION_ERROR if an error occurred. The associated message collection then contains information about the error.��Returns control immediately.�

Parameters

Dir		Type		Name		Description 		

[out, retval]	OLAPProgressStatus*		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPProperty

interface IOLAPProperty : IDispatch

A Property is a relationship between members of a dimension and data values, each value identified by a member along a dimension. A Property may be considered a variable that is dimensioned by a single dimension.��Any Property object will have a single data type. The getValue() method returns values for the property packaged as an OLAPAny object.��In the future, there may be additional relationships specified between properties and property values with dimensions and members.�

Properties

BSTR name�OLAPDataType type�IOLAPPropertyScope* scope�IOLAPValueType* valueType�

Property OLAPProperty::name (Read Only)

HRESULT name(BSTR *retval);

Get the name of the property.�

Property OLAPProperty::type (Read Only)

HRESULT type(OLAPDataType *retval);

Get the data type of the property. ��Possible types are:��double,�float,�text,�long,�date,�boolean�

Property OLAPProperty::scope (Read Only)

HRESULT scope(IOLAPPropertyScope **retval);

Get the PropertyScope that defines the set of all members having values for this property.

Property OLAPProperty::valueType (Read Only)

HRESULT valueType(IOLAPValueDescriptor *descriptor, IOLAPValueType **retval);

Get the ValueType, if any, corresponding to the value descriptor.

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueDescriptor*		descriptor	The value descriptor categorizing the ValueType.

Methods

HRESULT getValue (IOLAPMember *member, VARIANT *retval);

Method OLAPProperty::getValue

HRESULT getValue(IOLAPMember *member, VARIANT *retval);

Returns the value of a property at a given member.��Exception codes include:��WRONG_DIMENSIONALITY	The member does not share the same dimension as the property.

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPMember*		member	Member at which the value for this property is sought

[out, retval]	VARIANT*		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPPropertyScope

interface IOLAPPropertyScope : IDispatch

PropertyScope is an abstract type representing a set of Members sharing a common set of properties. The instances of Property contained in the properties association are valid for all Members within the scope. The precise meaning of "members within the scope" is deferred to the subtypes of PropertyScope.

Properties

IOLAPPropertyCollection* scopeProperties�

Property OLAPPropertyScope::scopeProperties (Read Only)

HRESULT scopeProperties(IOLAPPropertyCollection **retval);

Get the properties defined to this scope. ��Properties defined to an enclosing scope are not included in the collection. For example, every property available to a dimension is applicable to any level within that dimension, but when obtaining the properties for any level in that dimension, the dimension-scoped properties will not be included.

Methods

HRESULT getPropertyByName (BSTR name, IOLAPProperty **retval);�HRESULT getAllProperties (IOLAPPropertyCollection **retval);

Method OLAPPropertyScope::getPropertyByName

HRESULT getPropertyByName(BSTR name, IOLAPProperty **retval);

Returns the property defined for the PropertyScope instance whose name matches the given string. This method can be used to get a property defined for the PropertyScope instance or inherited from an enclosing scope.

Parameters

Dir		Type		Name		Description 		

[in]	BSTR		name	Name of property to get.

[out, retval]	IOLAPProperty**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPPropertyScope::getAllProperties

HRESULT getAllProperties(IOLAPPropertyCollection **retval);

Returns a collection of all the properties available for this PropertyScope instance. This includes properties defined for the instance and properties inherited from an enclosing scope.

Parameters

Dir		Type		Name		Description 		

[out, retval]	IOLAPPropertyCollection**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPSchema

interface IOLAPSchema : IDispatch

The Schema class represents a multi-dimensional schema that is accessible through a driver.

Properties

BSTR schemaVersion�BSTR schemaName�BSTR connectionString�IOLAPLanguage* language�IOLAPLanguageCollection* availableLanguages�IOLAPDriver* driver�

Property OLAPSchema::schemaVersion (Read Only)

HRESULT schemaVersion(BSTR *retval);

Get the version of the schema. Format TBD.

Property OLAPSchema::schemaName (Read Only)

HRESULT schemaName(BSTR *retval);

Get the name of the schema. The name is unique over all schemata accessible through the driver.

Property OLAPSchema::connectionString (Read Only)

HRESULT connectionString(BSTR *retval);

Get a string that identifies the schema to the driver. This string is saved with the driver name in the registry when a schema is registered. The user never sees the connection string when a connection is opened by the usual process of discovering installed drivers and/or registered schemata, but it is used when an application opens a connection with Driver::openConnection().

Property OLAPSchema::language (Read/Write)

HRESULT language(IOLAPLanguage **retval);

Get/set the default language for error messages produced in the domain of the Driver. This may be changed by the client.

Property OLAPSchema::availableLanguages (Read Only)

HRESULT availableLanguages(IOLAPLanguageCollection **retval);

Get the languages supported by this connection.

Property OLAPSchema::driver (Read Only)

HRESULT driver(IOLAPDriver **retval);

Get the Driver for which the schema is valid.

Methods

�Class OLAPSession

interface IOLAPSession : IDispatch

Before doing anything else with the API, an application must create a Session object. The Session object is delivered by the OLAP Council, and is not implemented by the vendors. ��An object implementing the ISession interface is created with a class factory.�

Properties

BSTR apiVersion�IOLAPLanguage* language�IOLAPConnectionCollection* openConnections�IOLAPDriverCollection* installedDrivers�

Property OLAPSession::apiVersion (Read Only)

HRESULT apiVersion(BSTR *retval);

Get the version of the MDAPI. Format TBD.

Property OLAPSession::language (Read Only)

HRESULT language(IOLAPLanguage **retval);

Get the default language for error messages produced in the domain of the Session.

Property OLAPSession::openConnections (Read Only)

HRESULT openConnections(IOLAPConnectionCollection **retval);

Get the set of all currently open connections attached to the session.

Property OLAPSession::installedDrivers (Read Only)

HRESULT installedDrivers(IOLAPDriverCollection **retval);

Get the installed drivers, as a DriverCollection. The collection is qualified by the name under which the driver was installed.��The list of drivers is maintained on each machine.�The list of drivers is installed on each machine, in the registry (keys TBD).�

Methods

HRESULT getDriverByName (BSTR driverName, IOLAPDriver **retval);�HRESULT openConnection (BSTR connectionString, BSTR authenticationString, IOLAPConnection **retval);

Method OLAPSession::getDriverByName

HRESULT getDriverByName(BSTR driverName, IOLAPDriver **retval);

Returns an instance of Driver, given a driver name.

Parameters

Dir		Type		Name		Description 		

[in]	BSTR		driverName	Name of driver.

[out, retval]	IOLAPDriver**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Method OLAPSession::openConnection

HRESULT openConnection(BSTR connectionString, BSTR authenticationString, IOLAPConnection **retval);

Open a connection to a multi-dimensional schema.

Parameters

Dir		Type		Name		Description 		

[in]	BSTR		connectionString	A string that identifies the schema to the driver

[in]	BSTR		authenticationString	A string that provides authentication information about the user to the driver.

[out, retval]	IOLAPConnection**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

�Class OLAPValueDescriptor

interface IOLAPValueDescriptor : IDispatch

A ValueDescriptor maps an Property or Measure to an individual value in a cell. Given a Property or Measure, a ValueDescriptor, and a suitable tuple (which, in the case of MemberScope and Property is a degenerate single-member tuple). the API can produce a single data value. Each Connection has a ValueDescriptor named "value".

Properties

BSTR name�

Property OLAPValueDescriptor::name (Read Only)

HRESULT name(BSTR *retval);

Get a name for the ValueDescriptor that is unique within the context of the connection.

Methods

�Class OLAPValueExpression

interface IOLAPValueExpression : IDispatch

Represents a function that returns a value for each member of the dimension associated with a query. Each ValueExpression instance returns a value of a specified data type. A ValueExpression instance may refer to other ValueExpression instances to support the representation of an expression.��With the exception of the subclass ParameterHolder, instances of ValueExpression are immutable.

Properties

OLAPDataType dataType�BSTR displayString�IOLAPMemberQuery* query�

Property OLAPValueExpression::dataType (Read Only)

HRESULT dataType(OLAPDataType *retval);

Get the DataType of the value.

Property OLAPValueExpression::displayString (Read Only)

HRESULT displayString(BSTR *retval);

Get an implementation-specific string that represents the value (for debugging/display purposes).

Property OLAPValueExpression::query (Read Only)

HRESULT query(IOLAPMemberQuery **retval);

Get the MemberQuery for which this value expression is defined. The value expression logically returns a single value for each member of the dimension of the query.

Methods

HRESULT opGT (IOLAPValueExpression *rhs, IOLAPValueExpression **retval);�HRESULT opGE (IOLAPValueExpression *rhs, IOLAPValueExpression **retval);�HRESULT opLT (IOLAPValueExpression *rhs, IOLAPValueExpression **retval);�HRESULT opLE (IOLAPValueExpression *rhs, IOLAPValueExpression **retval);�HRESULT opEQ (IOLAPValueExpression *rhs, IOLAPValueExpression **retval);�HRESULT opNE (IOLAPValueExpression *rhs, IOLAPValueExpression **retval);�HRESULT isMissing (IOLAPValueExpression **retval);�HRESULT isBetween (IOLAPValueExpression *lhs, IOLAPValueExpression *rhs, BOOL strictly, IOLAPValueExpression **retval);�HRESULT isInTopN (IOLAPParameterHolder *number, IOLAPValueExpression **retval);�HRESULT isInBottomN (IOLAPParameterHolder *number, IOLAPValueExpression **retval);�HRESULT isInPercentile (IOLAPParameterHolder *lhs, IOLAPParameterHolder *rhs, IOLAPValueExpression **retval);

Method OLAPValueExpression::opGT

HRESULT opGT(IOLAPValueExpression *rhs, IOLAPValueExpression **retval);

Returns a ValueExpression representing the result of the binary operator "greater than".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance > rhs"

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) > rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.

Method OLAPValueExpression::opGE

HRESULT opGE(IOLAPValueExpression *rhs, IOLAPValueExpression **retval);

Returns a ValueExpression representing the result of the binary operator "greater than or equal".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance >=rhs".

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE .�

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) >= rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.�

Method OLAPValueExpression::opLT

HRESULT opLT(IOLAPValueExpression *rhs, IOLAPValueExpression **retval);

Returns a ValueExpression representing the result of the binary operator "less than".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance < rhs".

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE .�

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) < rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.�

Method OLAPValueExpression::opLE

HRESULT opLE(IOLAPValueExpression *rhs, IOLAPValueExpression **retval);

Returns a ValueExpression representing the result of the binary operator "less than or equal".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance <= rhs".

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE .�

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) <= rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.�

Method OLAPValueExpression::opEQ

HRESULT opEQ(IOLAPValueExpression *rhs, IOLAPValueExpression **retval);

Returns a ValueExpression representing the result of the binary operator "equals".��If the data type is text, wild-card pattern matching is allowed. Allowable wildcard characters are:��*	match any number of characters�%	match any single character��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance = rhs".

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE, BOOLEAN.�

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) = rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.

Method OLAPValueExpression::opNE

HRESULT opNE(IOLAPValueExpression *rhs, IOLAPValueExpression **retval);

Returns a ValueExpression representing the result of the binary operator "not equals".��If the data type is text, wild-card pattern matching is allowed. Allowable wildcard characters are:��*	match any number of characters�%	match any single character��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance <> rhs".

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of double, float, long, text, date, boolean.�

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) <> rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.

Method OLAPValueExpression::isMissing

HRESULT isMissing(IOLAPValueExpression **retval);

Returns a ValueExpression representing the test "is the value of the ValueExpression instance missing".��

Parameters

Dir		Type		Name		Description 		

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) is true if and only if self (member) is the missing value.

Method OLAPValueExpression::isBetween

HRESULT isBetween(IOLAPValueExpression *lhs, IOLAPValueExpression *rhs, BOOL strictly, IOLAPValueExpression **retval);

Returns a ValueExpression representing the result of the test "is between values x and y".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expressions passed as parameters "lhs" and/or "rhs" do not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expressions passed as parameters "lhs" and/or "rhs" belong to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPValueExpression*		lhs	The ValueExpression to be used as the left hand side of the expression "lhs < ValueExpression instance < rhs

[in]	IOLAPValueExpression*		rhs	The ValueExpression to be used as the right hand side of the expression "lhs < ValueExpression instance < rhs".

[in]	BOOL		strictly	A Boolean value that determines whether the new expression is of the form "lhs < ValueExpression instance < rhs" (strictly = true) or "lhs<= ValueExpression instance <= rhs" (strictly = false).

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.query = lhs.query = rhs.query;�(2) self.dataType = lhs.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.��

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) If the parameter strictly is equal to true, then� (3a) newValueExpression (member) = (self (member) > lhs (member) and self (member) < rhs (member));� otherwise� (3b) newValueExpression (member) = (self (member) >= lhs (member) and self (member) <= rhs (member));�(4) If any one of self (member), rhs (member), or lhs (member) is the missing value, then newValueExpression (member) is also the missing value.

Method OLAPValueExpression::isInTopN

HRESULT isInTopN(IOLAPParameterHolder *number, IOLAPValueExpression **retval);

Returns a ValueExpression representing the result of the test "is among the top N values". ��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "number" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "number" belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPParameterHolder*		number	The value "N" in the predicate "is this one of the top N values?".

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.query = number.query�(2) number.dataType = LONG�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) For a set of members "M", the value of newValueExpression for the members of M is calculated as follows:�(3.1)	Calculate the value of the self(member) for each member in M;�(3.2)	Let S be the list of members in M sorted according to the natural ordering of these values (removing any members such that self(member) is missing);�(3.3)	Let N be the value of the parameter "number", and let T be the subset of M containing the first N members of S;�(3.4)	For any member in M, the value of newValueExpression(member) is true if and only if member is in the set T.

Method OLAPValueExpression::isInBottomN

HRESULT isInBottomN(IOLAPParameterHolder *number, IOLAPValueExpression **retval);

Returns a ValueExpression representing the result of the test "is among the bottom N values". ��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "number" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "number" belongs to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPParameterHolder*		number	The value "N" in the predicate "is this one of the often N values?"

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.query = number.query�(2) number.dataType = LONG�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) For a set of members "M", the value of newValueExpression for the members of M is calculated as follows:�(3.1)	Calculate the value of the self(member) for each member in M;�(3.2)	Let S be the list of members in M sorted according to the natural ordering of these values (removing any members such that self(member) is missing);�(3.3)	Let N be the value of the parameter "number", and let T be the subset of M containing the last N members of S;�(3.4)	For any member in M, the value of newValueExpression(member) is true if and only if member is in the set T.

Method OLAPValueExpression::isInPercentile

HRESULT isInPercentile(IOLAPParameterHolder *lhs, IOLAPParameterHolder *rhs, IOLAPValueExpression **retval);

Returns a ValueExpression representing the result of the test "is in the percentile between the given lower and upper bounds". ��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expressions passed as parameters "lhs" and/or "rhs" do not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expressions passed as parameters "lhs" and/or "rhs" belong to another query.�

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPParameterHolder*		lhs	The ParameterHolder to be used as the left hand side of the predicate "is this value in the lhs% to rhs% range?"

[in]	IOLAPParameterHolder*		rhs	The ParameterHolder to be used as the right hand side of the predicate "is this value in the lhs% to rhs% range?"

[out, retval]	IOLAPValueExpression**		retval	Method return value.

Returns

HRESULT

Possible Errors

OLAPException

Pre Conditions

(1) self.query = lower.query = upper.query�(2) lower.dataType= upper.dataType = DOUBLE�(3) 0 <= lower.value < upper.value <=1�(4) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�

Post Conditions

Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) For a set of members "M", the value of newValueExpression for the members of M is calculated as follows:�(3.1)	Calculate the value of the self(member) for each member in M;�(3.2)	Let S be the list of members in M sorted according to the natural ordering of these values (removing any members such that self(member) is missing);�(3.3)	Let L be the value of the parameter "lower", and let U be the value of the parameter "upper". Define T be the subset of M containing the members of S between L * count(S) and U * count(S).�(3.4)	For any member in M, the value of newValueExpression(member) is true if and only if member is in the set T.

�Class OLAPValueType

interface IOLAPValueType : IDispatch

A ValueType represents a particular type of data for a Property or Measure.

Properties

OLAPDataType type�

Property OLAPValueType::type (Read Only)

HRESULT type(OLAPDataType *retval);

Get the data type of the values for the ValueType.�

Methods

�Collection Classes

This section describes all of the collection classes. They all follow COM standards for collections of objects. Collections are ordered, and cannot contain holes or duplicate elements. Like arrays, the Collection classes can be accessed using an integer index. But the Collection classes also expose the Enumeration interface to allow simpler traversal.

The size of a Collection can grow or shrink as needed to accommodate the addition and removal of items after the object has been created.

Collection classes can be instantiated directly, and are provided by the OLAP Council. This allows code that instantiates these classes to remain independent of a particular vendor’s implementation.

Collection class OLAPCellCollection is described in detail. The remaining collection classes implement the same methods (replacing ‘Cell’ with their own type), and are summarized.

Class OLAPCellCollection

interface IOLAPCellCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPCell *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPCell **retval);�HRESULT Remove(long index);�

Method OLAPCellCollection::_NewEnum

HRESULT _NewEnum(LPUNKNOWN *retval);

Returns an IEnumVARIANT enumerator for the collection.

Parameters

Dir		Type		Name		Description 		

[out, retval]	LPUNKNOWN*	retval	The IUnknown interface pointer of the collection type, in this case OLAPCell.

Returns

HRESULT

Method OLAPCellCollection::Add

HRESULT Add(IOLAPCell *pObject);

Appends a new item to the collection.

Parameters

Dir		Type		Name		Description 		

[in]	IOLAPCell*	pObject	The Cell object to add to the collection.

Returns

HRESULT

Method OLAPCellCollection::Count

HRESULT Count(long *retval);

The number of items in the collection.

Parameters

Dir		Type		Name		Description 		

[out, retval]	long*	retval	Points to the value which holds the item count.

Returns

HRESULT

Method OLAPCellCollection::Item

HRESULT Item(long index, IOLAPCell **retval);

Returns the item at the given zero-based index position in the collection.

Parameters

Dir		Type		Name		Description 		

[in]	long	index	The index of the item to retrieve.

[out, retval]	IOLAPMemberQuery**	retval	Returns a pointer to the interface of the item in the collection, which in this case, is a pointer to the IOLAPCell interface.

Returns

HRESULT

Method OLAPCellCollection::Remove

HRESULT Remove(long index);

Removes the item at the given zero-based index position in the collection.

Parameters

Dir		Type		Name		Description 		

[in]	long	index	The index of the item to remove.

Returns

HRESULT

Class OLAPConnectionCollection

interface IOLAPConnectionCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPConnection *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPConnection **retval);�HRESULT Remove(long index);�

�Class OLAPCubeEdgeCollection

interface IOLAPCubeEdgeCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPCubeEdge *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPCubeEdge **retval);�HRESULT Remove(long index);�

�Class OLAPDimensionCollection

interface IOLAPDimensionCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPDimension *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPDimension **retval);�HRESULT Remove(long index);�

�Class OLAPDriverCollection

interface IOLAPDriverCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPDriver *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPDriver **retval);�HRESULT Remove(long index);�

�Class OLAPEdgeBufferCollection

interface IOLAPEdgeBufferCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPEdgeBuffer *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPEdgeBuffer **retval);�HRESULT Remove(long index);�

�Class OLAPEdgeLayerBufferCollection

interface IOLAPEdgeLayerBufferCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPEdgeLayerBuffer *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPEdgeLayerBuffer **retval);�HRESULT Remove(long index);�

�Class OLAPEdgeLayerCellCollection

interface IOLAPEdgeLayerCellCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPEdgeLayerCell *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPEdgeLayerCell **retval);�HRESULT Remove(long index);�

�Class OLAPHierarchyCollection

interface IOLAPHierarchyCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPHierarchy *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPHierarchy **retval);�HRESULT Remove(long index);�

�Class OLAPLanguageCollection

interface IOLAPLanguageCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPLanguage *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPLanguage **retval);�HRESULT Remove(long index);�

�Class OLAPLevelCollection

interface IOLAPLevelCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPLevel *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPLevel **retval);�HRESULT Remove(long index);�

�Class OLAPMemberCollection

interface IOLAPMemberCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPMember *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPMember **retval);�HRESULT Remove(long index);�

�Class OLAPMemberQueryCollection

interface IOLAPMemberQueryCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPMemberQuery *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPMemberQuery **retval);�HRESULT Remove(long index);�

�Class OLAPMessageCollection

interface IOLAPMessageCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPMessage *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPMessage **retval);�HRESULT Remove(long index);�

�Class OLAPParameterHolderCollection

interface IOLAPParameterHolderCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPParameterHolder *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPParameterHolder **retval);�HRESULT Remove(long index);�

�Class OLAPPropertyCollection

interface IOLAPPropertyCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPProperty *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPProperty **retval);�HRESULT Remove(long index);�

�Class OLAPSchemaCollection

interface IOLAPSchemaCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPSchema *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPSchema **retval);�HRESULT Remove(long index);�

�Class OLAPValueDescriptorCollection

interface IOLAPValueDescriptorCollection : IDispatch

Methods

HRESULT _NewEnum(LPUNKNOWN *retval);�HRESULT Add(IOLAPValueDescriptor *pObject);�HRESULT Count(long *retval);�HRESULT Item(long index, IOLAPValueDescriptor **retval);�HRESULT Remove(long index);�

� STYLEREF "Heading 1" * MERGEFORMAT �

� TITLE * MERGEFORMAT �MDAPI COM Reference�

		Table of Contents� STYLEREF "Heading 1" * MERGEFORMAT �

�PAGE �4�

�PAGE �i�

� TITLE * MERGEFORMAT �MDAPI COM Reference�

		Preface� STYLEREF "Heading 1" * MERGEFORMAT �

		� STYLEREF "Heading 1" * MERGEFORMAT �Classes�

�PAGE �2�

